994 resultados para Bacterial starter cultures.
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
The bacteria from a variety of fresh-water fish, Cyprinus carpio. var. communis, showed the presence of micrococci, Gram positive and Gram negative rods. These have been characterized as far as was possible. Of thirty-eight strains of bacteria used, only six strains were considered as causing spoilage of fish flesh in experiments where flesh was incubated with individual cultures of the bacteria. These six strains had been found on the surface and/or intestine of the fish and support the suggestions that, after death, invasion of flesh by bacteria from the surface and intestine could be the cause of bacterial spoilage of fish.
Resumo:
Dehydroacetic acid and ammonia were found to be very effective in checking the growth of all the cultures at all concentrations tried. The two nitrofuran derivatives namely, semicarbazone and AF-2 were fairly effective, semicarbazone being more effective than AF-2. Sodium nitrite was found to be totally ineffective against the cultures at all concentrations tried.
Resumo:
Making use of the streak plate technique and low temperature incubation, 28 cultures belonging to six genera namely, Achromobacter, Flavobacterium, Pseudomonas, Micrococcus, Vibrio and Alcaligenes were isolated from different varieties of marine fish. The growth studies indicated that all of them were able to grow between -5 and +5°C within a week's time and none of them showed growth at 37°C. The optimum temperature of growth for all these cultures was in the range 25-28°C. Among these only one, i.e., a Vibrio sp., was found to be an obligate psychrophile.
Resumo:
BACKGROUND: Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria throughout growth and have proposed roles in virulence, inflammation, and the response to envelope stress. Here we investigate outer membrane vesiculation as a bacterial mechanism for immediate short-term protection against outer membrane acting stressors. Antimicrobial peptides as well as bacteriophage were used to examine the effectiveness of OMV protection. RESULTS: We found that a hyper-vesiculating mutant of Escherichia coli survived treatment by antimicrobial peptides (AMPs) polymyxin B and colistin better than the wild-type. Supplementation of E. coli cultures with purified outer membrane vesicles provided substantial protection against AMPs, and AMPs significantly induced vesiculation. Vesicle-mediated protection and induction of vesiculation were also observed for a human pathogen, enterotoxigenic E. coli (ETEC), challenged with polymyxin B. When ETEC with was incubated with low concentrations of vesicles concomitant with polymyxin B treatment, bacterial survival increased immediately, and the culture gained resistance to polymyxin B. By contrast, high levels of vesicles also provided immediate protection but prevented acquisition of resistance. Co-incubation of T4 bacteriophage and OMVs showed fast, irreversible binding. The efficiency of T4 infection was significantly reduced by the formation of complexes with the OMVs. CONCLUSIONS: These data reveal a role for OMVs in contributing to innate bacterial defense by adsorption of antimicrobial peptides and bacteriophage. Given the increase in vesiculation in response to the antimicrobial peptides, and loss in efficiency of infection with the T4-OMV complex, we conclude that OMV production may be an important factor in neutralizing environmental agents that target the outer membrane of Gram-negative bacteria.
Resumo:
Benzylic monooxygenation of benzocycloalkenes, 2-4, by enzymes in intact cultures of Pseudomonas putida UV4 yielded exclusively the [R] enantiomers, 6-8, and the derived ketones 10-12; by contrast, biotransformation of benzocyclobutene, 1, yielded both monooxygenation (5 and 9), dioxygenation (13, 14 and 15), and trioxygenation (16) products.
Resumo:
Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.
Resumo:
This study shows that the disease resistance and survival rate of Penaeus monodon in a larval rearing systems can be enhanced by supplementing with antagonistic or non-antagonistic probiotics. The antagonistic mode of action of Pseudomonas MCCB 102 and MCCB 103 against vibrios was demonstrated in larval mesocosm with cultures having su⁄cient concentration of antagonistic compounds in their culture supernatant. Investigations on the antagonistic properties of Bacillus MCCB 101, Pseudomonas MCCB 102 and MCCB 103 and Arthrobacter MCCB 104 against Vibrio harveyi MCCB111under in vitro conditions revealed that Pseudomonas MCCB 102 and MCCB 103 were inhibitory to the pathogen.These inhibitory propertieswere further con¢rmed in the larval rearing systems of P. monodon. All these four probionts signi¢cantly improved larval survival in long-term treatments as well as when challengedwith a pathogenic strain ofV. harveyiMCCB111. We could demonstrate that Pseudomonas MCCB 102 andMCCB103 accorded disease resistance and a higher survival rate in P. monodon larval rearing systems throughactive antagonism of vibrios,whereas Bacillus MCCB 101 and Arthrobacter MCCB 104 functioned as probiotics through immunostimulatory and digestive enzyme-supporting modes of action.
Resumo:
The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.
Resumo:
The reduction of water-insoluble indigo by the recently isolated moderate thermophile, Clostridium isatidis, has been studied with the aim of developing a sustainable technology for industrial indigo reduction. The ability to reduce indigo was not shared with C. aurantibutyricum, C. celatum and C. papyrosolvens, but C. papyrosolvens could reduce indigo carmine (5,5-indigosulfonic acid), a soluble indigo derivative. The supernatant from cultures of C. isatidis, but not from cultures of the other bacteria tested, decreased indigo particle size to one-tenth diameter. Addition of madder powder, anthraquinone-2,6-disulfonic acid, and humic acid all stimulated indigo reduction by C. isatidis. Redox potentials of cultures of C. isatidis were about 100 mV more negative than those of C. aurantibutyricum, C. celatum and C. papyrosolvens, and reached –600 mV versus the SCE in the presence of indigo, but potentials were not consistently affected by the addition of the quinone compounds, which probably act by modifying the surface of the bacteria or indigo particles. It is concluded that C. isatidis can reduce indigo because (1) it produces an extracellular factor that decreases indigo particle size, and (2) it generates a sufficiently reducing potential.
Resumo:
Stirred, pH controlled batch cultures were carried out with faecal inocula and various chitosans to investigate the fermentation of chitosan derivatives by the human gut flora. Changes in bacterial levels and short chain fatty acids were measured over time. Low, medium and high molecular weight chitosan caused a decrease in bacteroides, bifidobacteria, clostridia and lactobacilli. A similar pattern was seen with chitosan oligosaccharide (COS). Butyrate levels also decreased. A three-stage fermentation model of the human colon was used for investigation of the metabolism of COS. In a region representing the proximal colon, clostridia decreased while lactobacilli increased. In the region representing the transverse colon, bacteroides and clostridia increased. Distally a small increase in bacteroides occurred. Butyrate levels increased. Under the highly competitive conditions of the human colon, many members of the microflora, are unable to compete for chitosans of low, medium or high molecular weight. COS were more easily utilised and when added to an in vitro colonic model led to increased production of butyrate, but some populations of potentially detrimental bacteria also increased. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The prebiotic potential of a konjac glucomannan hydrolysate (GMH) was investigated in vitro using batch cultures inoculated with human faeces. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation (FISH), and short chain fatty acid (SCFA) production was monitored by gas chromatography. The populations of Bifidobacterium genus, Lactobacillus–Enterococcus group and the Atopobium group all significantly increased after GMH and inulin fermentation. The Bacteroides–Prevotella group had a lower end population after GMH fermentation while inulin gave an increase, although these differences were not significant. No significant differences in SCFA concentrations were observed between inulin and GMH. As with inulin, GMH produced selective stimulation of beneficial gut microbiota and a favourable SCFA profile. In order to confirm a beneficial effect of GMH further in vivo studies involving healthy human volunteers should be considered.
Resumo:
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, > 10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.
Resumo:
Imbalances in gut microbiota composition during ulcerative colitis (UC) indicate a role for the microbiota in propagating the disorder. Such effects were investigated using in vitro batch cultures (with/without mucin, peptone or starch) inoculated with faecal slurries from healthy or UC patients; the growth of five bacterial groups was monitored along with short-chain fatty acid (SCFA) production. Healthy cultures gave two-fold higher growth and SCFA levels with up to ten-fold higher butyrate production. Starch gave the highest growth and SCFA production (particularly butyrate), indicating starch-enhanced saccharolytic activity. Sulphate-reducing bacteria (SRB) were the predominant bacterial group (of five examined) for UC inocula whereas they were the minority group for the healthy inocula. Furthermore, SRB growth was stimulated by peptone presumably due to the presence of sulphur-rich amino acids. The results suggest raised SRB levels in UC, which could contribute to the condition through release of toxic sulphide.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.