993 resultados para BCR-ABL KINASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A introdução do mesilato de imatinibe como tratamento da leucemia mielóide crônica tem salvado muitos pacientes, mas o sucesso da terapia tem sido prejudicado pela resistência e possível não destruição do clone maligno. Este artigo descreve a resposta citogenética e padrões citogenéticos anormais envolvendo os genes ABL e BCR detectados por FISH em pacientes em uso exclusivo de imatinibe. Os resultados mostraram que outras alterações envolvendo os genes BCR e ABL não parecem estar relacionadas à resistência à droga, elas ocorrem em baixas freqüências e podem não estar associadas à resposta citogenética ou ao tempo de tratamento. Contudo, a resposta ao imatinibe parece ser individual e imprevisível, independente do tempo e do início do tratamento após o diagnóstico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukemia is a genetic disease from a noncontrolled abnormal process of the hematopoietic cells' differentiation and proliferation. Some alterations of structure and number of chromosomes have been well and specifically observed in leukemia. The detection of these alterations is highly significant in providing the patients' diagnosis, prognosis and treatment as well as the understanding of the genetic bases of this disease. The purpose of this work is to study some chromosomal alterations in peripheral blood and/or bone marrow in patients with different leukemia types by means of conventional cytogenetic techniques, and also to investigate the presence of BCR/ABL gene rearrangement and some alterations in chromosome 20 by the FISH technique. Samples of peripheral blood and/or bone marrow of 28 patients, who were not under chemoor radio-therapeutic treatment, were studied: 15 with CML, 11 with AML and 2 with ALL. The alteration most frequent was t(9;22) in the CML, whose presence or absence was related to a good or bad prognosis, respectively. A case of AMI showed inv(16)(p13q22), related to a good prognosis. Some alterations not reported previously in the literature were found, such as the trisomy in chromosome 2 associated to chromosome Ph showing some disease progress in one of the CML cases and t(5;16)(q13;q22) in an AML patient. One of the cases was submitted to an allogeneic hone marrow transplant. The monitoring after the 23 rd day of transplant, detected 95% of the donor cells suggesting the procedure had succeeded. Two patients, an AMI and the other ALL, showed trisomy of chromosome 20 in the neoplastic cells. The results showed the importance of the cytogenetic analysis in relation to leukemia, its direct benefits to the patients and the biological mechanisms involved in this disease. They also allowed the introduction in the Genetic Service of FAMERP techniques to obtain the bone marrow metaphases and the FISH technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The monitoring of BCR-ABL transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR) has become important to assess minimal residual disease (MRD) and standard of care in the treatment of chronic myeloid leukemia (CML). In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of BCR-ABL gene rearrangements in blood samples from 91 CML patients in chronic phase (CP) who achieved complete cytogenetic remission (CCyR) and major molecular remission (MMR) throughout imatinib treatment. Methods The absolute level of BCR-ABL transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols. Results Based on sequential analysis of BCR-ABL transcripts, the 91 patients were divided into three categories: (A) 57 (62.6%) had no variation on sequential analysis; (B) 30 (32.9%) had a single positive variation result obtained in a single sample; and (C) 4 (4.39%) had variations of BCR-ABL transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C), 19 (55.8%) had a < 1% of BCR-ABL/BCR ratio, 13 (38.2%) patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the ABL gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5%) patients, and none of whom lost CCyR. Conclusions Despite an increase levels of BCR-ABL/BCR ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of imatinib on the basis of BCR-ABL/BCR% sustained increase and mutational studies is a prudent approach for preserving other therapeutic options in imatinib-resistant patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro-generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the representation difference analysis technique, we have identified a novel gene, Ian4, which is preferentially expressed in hematopoietic precursor 32D cells transfected with wild-type versus mutant forms of the Bcr/Abl oncogene. Ian4 expression was undetectable in 32D cells transfected with v-src, oncogenic Ha-ras or v-Abl. Murine Ian4 maps to chromosome 6, 25 cM from the centromere. The Ian4 mRNA contains two open reading frames (ORFs) separated by 5 nt. The first ORF has the potential to encode for a polypeptide of 67 amino acids without apparent homology to known proteins. The second ORF encodes a protein of 301 amino acids with a GTP/ATP-binding site in the N-terminus and a hydrophobic domain in the extreme C-terminus. The IAN-4 protein resides in the mitochondrial outer membrane and the last 20 amino acids are necessary for this localization. The IAN-4 protein has GTP-binding activity and shares sequence homology with a novel family of putative GTP-binding proteins: the immuno-associated nucleotide (IAN) family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a malignant clonal blood disease that originates from a pluripotent hematopoietic stem cell. The cytogenetic hallmark of CML, the Philadelphia chromosome (Ph), is formed as a result of reciprocal translocation between chromosomes 9 and 22, which leads to a formation of a chimeric BCR-ABL fusion gene. The BCR-ABL protein is a constitutively active tyrosine kinase that changes the adhesion properties of cells, constitutively activates mitogenic signaling, enhances cell proliferation and reduces apoptosis. This results in leukemic growth and the clinical disease, CML. With the advent of targeted therapies against the BCR-ABL fusion protein, the treatment of CML has changed considerably during the recent decade. In this thesis, the clinical significance of different diagnostic methods and new prognostic factors in CML have been assessed. First, the association between two different methods for measuring CML disease burden (the RQ-PCR and the high mitotic index metaphase FISH) was assessed in bone marrow and peripheral blood samples. The correlation between positive RQ-PCR and metaphase FISH samples was high. However, RQ-PCR was more sensitive and yielded measurable transcripts in 40% of the samples that were negative by metaphase FISH. The study established a laboratory-specific conversion factor for setting up the International Scale when standardizing RQ-PCR measurements. Secondly, the amount of minimal residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (alloHSCT) was determined. For this, metaphase FISH was done for the bone marrow samples of 102 CML patients. Most (68%), had no residual cells during the entire follow-up time. Some (12 %) patients had minor (<1%) MRD which decreased even further with time, whereas 19% had a progressive rise in MRD that exceeded 1% or had more than 1% residual cells when first detected. Residual cells did not become eradicated spontaneously if the frequency of Ph+ cells exceeded 1% during follow-up. Next, the impact of deletions in the derivative chromosome 9, was examined. Deletions were observed in 15% of the CML patients who later received alloHSCT. After alloHSCT, there was no difference in the total relapse rate in patients with or without deletions. Nor did the estimates of overall survival, transplant-related mortality, leukemia-free survival and relapse-free time show any difference between these groups. When conventional treatment regimens are used, the der(9) status could be an important criterion, in conjunction with other prognostic factors, when allogeneic transplantation is considered. The significance of der(9) deletions for patients treated with tyrosine kinase inhibitors is not clear and requires further investigation. In addition to the der(9) status of the patient, the significance of bone marrow lymphocytosis as a prognostic factor in CML was assessed. Bone marrow lymphocytosis during imatinib therapy was a positive predictive factor and heralded optimal response. When combined with major cytogenetic response at three months of treatment, bone marrow lymphocytosis predicted a prognostically important major molecular response at 18 months of imatinib treatment. Although the validation of these findings is warranted, the determination of the bone marrow lymphocyte count could be included in the evaluation of early response to imatinib treatment already now. Finally, BCR-ABL kinase domain mutations were studied in CML patients resistant against imatinib treatment. Point mutations detected in the kinase domain were the same as previously reported, but other sequence variants, e.g. deletions or exon splicing, were also found. The clinical significance of the other variations remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the beneficial effects of imatinib mesylate, some patients may either not respond or respond suboptimally. Here, we report two chronic myelogenous leukemia patients; one had a suboptimal response according to European LeukemiaNet criteria (a major molecular response was not achieved after 18 months of standard-dose imatinib therapy) and the other had failure with a standard dose of imatinib. At the time of the suboptimal response in patient 1 and the failure in patient 2, we were able to detect the F359I mutation in the BCR-ABL tyrosine kinase domain using DNA sequencing in both patients. Therefore, it was decided to change the therapeutic regimen to dasatinib at a dose of 100 mg once daily in both patients. This change resulted in the achievement of complete cytogenetic remission in patient 1 after 4 months and a major molecular response within 2 and 3 months in both patients. Detection of the F359I mutation in our two cases likely explains the suboptimal response to imatinib in case 1 and the failure in case 2. This implies that in such cases dasatinib should be considered to effectively suppress the mutated clones. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.