971 resultados para Autocorrelation (Statistics)
Resumo:
The majority of sugar mill locomotives are equipped with GPS devices from which locomotive position data is stored. Locomotive run information (e.g. start times, run destinations and activities) is electronically stored in software called TOTools. The latest software development allows TOTools to interpret historical GPS information by combining this data with run information recorded in TOTools and geographic information from a GIS application called MapInfo. As a result, TOTools is capable of summarising run activity details such as run start and finish times and shunt activities with great accuracy. This paper presents 15 reports developed to summarise run activities and speed information. The reports will be of use pre-season to assist in developing the next year's schedule and for determining priorities for investment in the track infrastructure. They will also be of benefit during the season to closely monitor locomotive run performance against the existing schedule.
Resumo:
Experts are increasingly being called upon to quantify their knowledge, particularly in situations where data is not yet available or of limited relevance. In many cases this involves asking experts to estimate probabilities. For example experts, in ecology or related fields, might be called upon to estimate probabilities of incidence or abundance of species, and how they relate to environmental factors. Although many ecologists undergo some training in statistics at undergraduate and postgraduate levels, this does not necessarily focus on interpretations of probabilities. More accurate elicitation can be obtained by training experts prior to elicitation, and if necessary tailoring elicitation to address the expert’s strengths and weaknesses. Here we address the first step of diagnosing conceptual understanding of probabilities. We refer to the psychological literature which identifies several common biases or fallacies that arise during elicitation. These form the basis for developing a diagnostic questionnaire, as a tool for supporting accurate elicitation, particularly when several experts or elicitors are involved. We report on a qualitative assessment of results from a pilot of this questionnaire. These results raise several implications for training experts, not only prior to elicitation, but more strategically by targeting them whilst still undergraduate or postgraduate students.
Resumo:
In estuaries and natural water channels, the estimate of velocity and dispersion coefficients is critical to the knowledge of scalar transport and mixing. This estimate is rarely available experimentally at sub-tidal time scale in shallow water channels where high frequency is required to capture its spatio-temporal variation. This study estimates Lagrangian integral scales and autocorrelation curves, which are key parameters for obtaining velocity fluctuations and dispersion coefficients, and their spatio-temporal variability from deployments of Lagrangian drifters sampled at 10 Hz for a 4-hour period. The power spectral densities of the velocities between 0.0001 and 0.8 Hz were well fitted with a slope of 5/3 predicted by Kolmogorov’s similarity hypothesis within the inertial subrange, and were similar to the Eulerian power spectral previously observed within the estuary. The result showed that large velocity fluctuations determine the magnitude of the integral time scale, TL. Overlapping of short segments improved the stability of the estimate of TL by taking advantage of the redundant data included in the autocorrelation function. The integral time scales were about 20 s and varied by up to a factor of 8. These results are essential inputs for spatial binning of velocities, Lagrangian stochastic modelling and single particle analysis of the tidal estuary.
Resumo:
The practice of statistics is the focus of the world in which professional statisticians live. To understand meaningfully what this practice is about, students need to engage in it themselves. Acknowledging the limitations of a genuine classroom setting, this study attempted to expose four classes of year 5 students (n=91) to an authentic experience of the practice of statistics. Setting an overall context of people’s habits that are considered environmentally friendly, the students sampled their class and set criteria for being environmentally friendly based on questions from the Australian Bureau of Statistics CensusAtSchool site. They then analysed the data and made decisions, acknowledging their degree of certainty, about three populations based on their criteria: their class, year 5 students in their school and year 5 students in Australia. The next step was to collect a random sample the size of their class from an Australian Bureau of Statistics ‘population’, analyse it and again make a decision about Australian year 5 students. At the end, they suggested what further research they might do. The analysis of students’ responses gives insight into primary students’ capacity to appreciate and understand decision making, and to participate in the practice of statistics, a topic that has received very little attention in the literature. Based on the total possible score of 23 from student workbook entries, 80 % of students achieved at least a score of 11.
Resumo:
We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.
Resumo:
Many statistical forecast systems are available to interested users. In order to be useful for decision-making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and their statistical manifestation have been firmly established, the forecasts must also provide some quantitative evidence of `quality’. However, the quality of statistical climate forecast systems (forecast quality) is an ill-defined and frequently misunderstood property. Often, providers and users of such forecast systems are unclear about what ‘quality’ entails and how to measure it, leading to confusion and misinformation. Here we present a generic framework to quantify aspects of forecast quality using an inferential approach to calculate nominal significance levels (p-values) that can be obtained either by directly applying non-parametric statistical tests such as Kruskal-Wallis (KW) or Kolmogorov-Smirnov (KS) or by using Monte-Carlo methods (in the case of forecast skill scores). Once converted to p-values, these forecast quality measures provide a means to objectively evaluate and compare temporal and spatial patterns of forecast quality across datasets and forecast systems. Our analysis demonstrates the importance of providing p-values rather than adopting some arbitrarily chosen significance levels such as p < 0.05 or p < 0.01, which is still common practice. This is illustrated by applying non-parametric tests (such as KW and KS) and skill scoring methods (LEPS and RPSS) to the 5-phase Southern Oscillation Index classification system using historical rainfall data from Australia, The Republic of South Africa and India. The selection of quality measures is solely based on their common use and does not constitute endorsement. We found that non-parametric statistical tests can be adequate proxies for skill measures such as LEPS or RPSS. The framework can be implemented anywhere, regardless of dataset, forecast system or quality measure. Eventually such inferential evidence should be complimented by descriptive statistical methods in order to fully assist in operational risk management.
Resumo:
Climate variability and change are risk factors for climate sensitive activities such as agriculture. Managing these risks requires "climate knowledge", i.e. a sound understanding of causes and consequences of climate variability and knowledge of potential management options that are suitable in light of the climatic risks posed. Often such information about prognostic variables (e.g. yield, rainfall, run-off) is provided in probabilistic terms (e.g. via cumulative distribution functions, CDF), whereby the quantitative assessments of these alternative management options is based on such CDFs. Sound statistical approaches are needed in order to assess whether difference between such CDFs are intrinsic features of systems dynamics or chance events (i.e. quantifying evidences against an appropriate null hypothesis). Statistical procedures that rely on such a hypothesis testing framework are referred to as "inferential statistics" in contrast to descriptive statistics (e.g. mean, median, variance of population samples, skill scores). Here we report on the extension of some of the existing inferential techniques that provides more relevant and adequate information for decision making under uncertainty.
Resumo:
The National Health Interview Survey - Disability supplement (NHIS-D) provides information that can be used to understand myriad topics related to health and disability. The survey provides comprehensive information on multiple disability conceptualizations that can be identified using information about health conditions (both physical and mental), activity limitations, and service receipt (e.g. SSI, SSDI, Vocational Rehabilitation). This provides flexibility for researchers in defining populations of interest. This paper provides a description of the data available in the NHIS-D and information on how the data can be used to better understand the lives of people with disabilities.
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
Management of the commercial harvest of kangaroos relies on quotas set annually as a proportion of regular estimates of population size. Surveys to generate these estimates are expensive and, in the larger states, logistically difficult; a cheaper alternative is desirable. Rainfall is a disappointingly poor predictor of kangaroo rate of increase in many areas, but harvest statistics (sex ratio, carcass weight, skin size and animals shot per unit time) potentially offer cost-effective indirect monitoring of population abundance (and therefore trend) and status (i.e. under-or overharvest). Furthermore, because harvest data are collected continuously and throughout the harvested areas, they offer the promise of more intensive and more representative coverage of harvest areas than aerial surveys do. To be useful, harvest statistics would need to have a close and known relationship with either population size or harvest rate. We assessed this using longterm (11-22 years) data for three kangaroo species (Macropus rufus, M. giganteus and M. fuliginosus) and common wallaroos (M. robustus) across South Australia, New South Wales and Queensland. Regional variation in kangaroo body size, population composition, shooter efficiency and selectivity required separate analyses in different regions. Two approaches were taken. First, monthly harvest statistics were modelled as a function of a number of explanatory variables, including kangaroo density, harvest rate and rainfall. Second, density and harvest rate were modelled as a function of harvest statistics. Both approaches incorporated a correlated error structure. Many but not all regions had relationships with sufficient precision to be useful for indirect monitoring. However, there was no single relationship that could be applied across an entire state or across species. Combined with rainfall-driven population models and applied at a regional level, these relationships could be used to reduce the frequency of aerial surveys without compromising decisions about harvest management.
Resumo:
Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.
Resumo:
A very general and numerically quite robust algorithm has been proposed by Sastry and Gauvrit (1980) for system identification. The present paper takes it up and examines its performance on a real test example. The example considered is the lateral dynamics of an aircraft. This is used as a vehicle for demonstrating the performance of various aspects of the algorithm in several possible modes.