902 resultados para Atrofia muscular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiscale approach that bridges the biophysics of the actin molecules at nanoscale and the biomechanics of actin filament at microscale level is developed and used to evaluate the mechanical performances of actin filament bundles. In order to investigate the contractile properties of skeletal muscle which is induced by the protein motor of myosin, a molecular model is proposed in the prediction of the dynamic behaviors of skeletal muscle based on classic sliding filament model. Randomly distributed myosin motors are applied on a 2.2 μm long sarcomere, whose principal components include actin and myosin filaments. It can be found that, the more myosin motors on the sarcomere, the faster the sarcomere contracts. The result demonstrates that the sarcomere shortening speed cannot increase infinitely by the modulation of myosin, thus providing insight into the self-protective properties of skeletal muscles. This molecular filament sliding model provides a theoretical way to evaluate the properties of skeletal muscles, and contributes to the understandings of the molecular mechanisms in the physiological phenomenon of muscular contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To assess the feasibility and efficacy of delivering Pilates exercises for resistance training to breast cancer survivors using the MVe Fitness Chair™. Design Pilot randomized controlled trial. Methods Twenty-six female breast cancer survivors were randomized to use the MVe Fitness Chair™ (n = 8), traditional resistance training (n = 8), or a control group (no exercise) (CO) (n = 10). The MVe Fitness Chair™ and traditional resistance training groups completed 8 weeks of exercise. Muscular endurance was assessed pre and post-test for comparisons within and between groups using push ups, curl ups, and the Dynamic Muscular Endurance Test Battery for Cancer Patients of Various Ages. Results Feasibility of the MVe Fitness Chair™ was good, evidenced by over 80% adherence for both exercise groups and positive narrative feedback. Significant improvements in muscular endurance were observed in the MVe Fitness Chair™ (p < 0.002) and traditional resistance training groups (p < 0.001), but there were no differences in improvement between the MVe Fitness Chair™ and traditional resistance training groups (p < 0.711) indicating that Pilates and traditional resistance training may be equally effective at improving muscular endurance in this population. Conclusions The MVe Fitness Chair™ is feasible for use in breast cancer survivors. It appears to promote similar improvements in muscular endurance when compared to traditional resistance training, but has several advantages over traditional resistance training, including cost, logistics, enjoyment, and ease of learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-endurance exercise, such as an Ironman triathlon, induces muscle damage and a systemic inflammatory response. As the resolution of recovery in these parameters is poorly documented, we investigated indices of muscle damage and systemic inflammation in response to an Ironman triathlon and monitored these parameters 19 days into recovery. Blood was sampled from 42 well-trained male triathletes 2 days before, immediately after, and 1, 5 and 19 days after an Ironman triathlon. Blood samples were analyzed for hematological profile, and plasma values of myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, cortisol, testosterone, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, IL-10 and high-sensitive C-reactive protein (hs-CRP). Immediately post-race there were significant (P < 0.001) increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity, myoglobin, IL-6, IL-10 and hs-CRP, while testosterone significantly (P < 0.001) decreased compared to prerace. With the exception of cortisol, which decreased below prerace values (P < 0.001), these alterations persisted 1 day post-race (P < 0.001; P < 0.01 for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had decreased, but were still significantly (P < 0.001) elevated. Nineteen days post-race most parameters had returned to prerace values, except for MPO and PMN elastase, which had both significantly (P < 0.001) decreased below prerace concentrations, and myoglobin and hs-CRP, which were slightly, but significantly higher than prerace. Furthermore, significant relationships between leukocyte dynamics, cortisol, markers of muscle damage, cytokines and hs-CRP after the Ironman triathlon were noted. This study indicates that the pronounced initial systemic inflammatory response induced by an Ironman triathlon declines rapidly. However, a low-grade systemic inflammation persisted until at least 5 days post-race, possibly reflecting incomplete muscle recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT) on measures of muscular strength in people with Parkinson’s disease (PD). Methods Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design. Results Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention. Discussion Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be superior to other exercise types. Interventions which combine RT with other exercise may be most effective. Findings should be interpreted with caution due to the relatively high risk of bias of most studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin(+) Sox2(+) neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). -- Results: Here we report the isolation and long term propagation of another population of Nestin(+) cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. -- Conclusion: Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complacência da bexiga depende de músculos lisos, fibras colágenas, fibras elásiticas e suas relações. O objetivo deste trabalho é determinar a composição da matriz extracelular em amostras de bexigas normais através de análise bioquímica de colágeno e glicosaminoglicanos em amostras obtidas de mulheres em diferentes grupos de idade, analisando separadamente as camadas urotelial e muscular. Avaliamos 17 amostras de bexiga divididas em três grupos: infância (N=5), menacme (N=6) e pós-menopausa (N=6). As bexigas foram analisadas para concentração de GAG total e colágeno e para análise qualitativa de GAG por eletroforese em gel de agarose. Na camada muscular, não houve diferença entre os grupos tanto para GAG quanto para colágeno. Na camada urotelial, a análise da concentração de colágeno não mostrou diferença entre os grupos, mas a concentração de GAG no grupo da pós-menopausa (0.21 0.12 μg de ácido hexurônico/mg de tecido seco) apresentou diferença em relação aos grupos do menacme (1.78 1.62 μg de ácido hexurônico/mg de tecido seco) e da infância ( 2.29 1.32 μg de ácido hexurônico/mg de tecido seco).Nosso trabalho concluiu que a concentração de GAG está substancialmente diminuída na camada urotelial da bexiga de mulheres na pós-menopausa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscular injection has become one of the direct methods for transferring foreign DNA into organisms. The technique has been recently introduced in the development of vaccines and gene therapy. Vaccine development, in particular, would be desirable in managing viral diseases in farmed fish. In this study, the technique was performed on seabass (Lates calcarifer) and was found that the foreign gene could be transferred successfully through injection into the muscles.