967 resultados para Asymptotically optimal policy
Resumo:
This paper examines four equivalent methods of optimal monetary policymaking, committing to the social loss function, using discretion with the central bank long-run and short-run loss functions, and following monetary policy rules. All lead to optimal economic performance. The same performance emerges from these different policymaking methods because the central bank actually follows the same (similar) policy rules. These objectives (the social loss function, the central bank long-run and short-run loss functions) and monetary policy rules imply a complete regime for optimal policy making. The central bank long-run and short-run loss functions that produce the optimal policy with discretion differ from the social loss function. Moreover, the optimal policy rule emerges from the optimization of these different central bank loss functions.
Resumo:
Accessibility is an essential concept widely used to evaluate the impact of transport and land-use strategies in urban planning and policy making. Accessibility is typically evaluated by using separately a transport model or a land-use model. This paper embeds two accessibility indicators (i.e., potential and adaptive accessibility) in a land use and transport interaction (LUTI) model in order to assess transport policies implementation. The first aim is to define the adaptive accessibility, considering the competition factor at territorial level (e.g. workplaces and workers). The second aim is to identify the optimal implementation scenario of policy measures using potential and adaptive accessibility indicators. The analysis of the results in terms of social welfare and accessibility changes closes the paper. Two transport policy measures are applied in Madrid region: a cordon toll and increase bus frequency. They have been simulated through the MARS model (Metropolitan Activity Relocation Simulator, i.e. LUTI model). An optimisation procedure is performed by MARS for maximizing the value of the objective function in order to find the optimal policy implementation (first best). Both policy measures are evaluated in terms of accessibility. Results show that the introduction of the accessibility indicators (potential and adaptive) influence the optimal value of the toll price and bus frequency level, generating different results in terms of social welfare. Mapping the difference between potential and adaptive accessibility indicator shows that the main changes occur in areas where there is a strong competition among different land-use opportunities.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
and human capital externalities. Because of such externalities, education investment is too low and fertility is too high. While education subsidies are the conventional means to deal with these problems, we show that the optimal policy also comprises debt even when distortionary taxes are used. The reason is that debt tips the usual trade-off between children's quantity and quality in favor of the latter by increasing the bequest cost of children. The optimal debt-output ratio exceeds 10% for plausible parameterization. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Cette thèse se compose de trois articles sur les politiques budgétaires et monétaires optimales. Dans le premier article, J'étudie la détermination conjointe de la politique budgétaire et monétaire optimale dans un cadre néo-keynésien avec les marchés du travail frictionnels, de la monnaie et avec distortion des taux d'imposition du revenu du travail. Dans le premier article, je trouve que lorsque le pouvoir de négociation des travailleurs est faible, la politique Ramsey-optimale appelle à un taux optimal d'inflation annuel significativement plus élevé, au-delà de 9.5%, qui est aussi très volatile, au-delà de 7.4%. Le gouvernement Ramsey utilise l'inflation pour induire des fluctuations efficaces dans les marchés du travail, malgré le fait que l'évolution des prix est coûteuse et malgré la présence de la fiscalité du travail variant dans le temps. Les résultats quantitatifs montrent clairement que le planificateur s'appuie plus fortement sur l'inflation, pas sur l'impôts, pour lisser les distorsions dans l'économie au cours du cycle économique. En effet, il ya un compromis tout à fait clair entre le taux optimal de l'inflation et sa volatilité et le taux d'impôt sur le revenu optimal et sa variabilité. Le plus faible est le degré de rigidité des prix, le plus élevé sont le taux d'inflation optimal et la volatilité de l'inflation et le plus faible sont le taux d'impôt optimal sur le revenu et la volatilité de l'impôt sur le revenu. Pour dix fois plus petit degré de rigidité des prix, le taux d'inflation optimal et sa volatilité augmentent remarquablement, plus de 58% et 10%, respectivement, et le taux d'impôt optimal sur le revenu et sa volatilité déclinent de façon spectaculaire. Ces résultats sont d'une grande importance étant donné que dans les modèles frictionnels du marché du travail sans politique budgétaire et monnaie, ou dans les Nouveaux cadres keynésien même avec un riche éventail de rigidités réelles et nominales et un minuscule degré de rigidité des prix, la stabilité des prix semble être l'objectif central de la politique monétaire optimale. En l'absence de politique budgétaire et la demande de monnaie, le taux d'inflation optimal tombe très proche de zéro, avec une volatilité environ 97 pour cent moins, compatible avec la littérature. Dans le deuxième article, je montre comment les résultats quantitatifs impliquent que le pouvoir de négociation des travailleurs et les coûts de l'aide sociale de règles monétaires sont liées négativement. Autrement dit, le plus faible est le pouvoir de négociation des travailleurs, le plus grand sont les coûts sociaux des règles de politique monétaire. Toutefois, dans un contraste saisissant par rapport à la littérature, les règles qui régissent à la production et à l'étroitesse du marché du travail entraînent des coûts de bien-être considérablement plus faible que la règle de ciblage de l'inflation. C'est en particulier le cas pour la règle qui répond à l'étroitesse du marché du travail. Les coûts de l'aide sociale aussi baisse remarquablement en augmentant la taille du coefficient de production dans les règles monétaires. Mes résultats indiquent qu'en augmentant le pouvoir de négociation du travailleur au niveau Hosios ou plus, les coûts de l'aide sociale des trois règles monétaires diminuent significativement et la réponse à la production ou à la étroitesse du marché du travail n'entraîne plus une baisse des coûts de bien-être moindre que la règle de ciblage de l'inflation, qui est en ligne avec la littérature existante. Dans le troisième article, je montre d'abord que la règle Friedman dans un modèle monétaire avec une contrainte de type cash-in-advance pour les entreprises n’est pas optimale lorsque le gouvernement pour financer ses dépenses a accès à des taxes à distorsion sur la consommation. Je soutiens donc que, la règle Friedman en présence de ces taxes à distorsion est optimale si nous supposons un modèle avec travaie raw-efficace où seule le travaie raw est soumis à la contrainte de type cash-in-advance et la fonction d'utilité est homothétique dans deux types de main-d'oeuvre et séparable dans la consommation. Lorsque la fonction de production présente des rendements constants à l'échelle, contrairement au modèle des produits de trésorerie de crédit que les prix de ces deux produits sont les mêmes, la règle Friedman est optimal même lorsque les taux de salaire sont différents. Si la fonction de production des rendements d'échelle croissant ou decroissant, pour avoir l'optimalité de la règle Friedman, les taux de salaire doivent être égales.
Resumo:
Cette thèse se compose de trois articles sur les politiques budgétaires et monétaires optimales. Dans le premier article, J'étudie la détermination conjointe de la politique budgétaire et monétaire optimale dans un cadre néo-keynésien avec les marchés du travail frictionnels, de la monnaie et avec distortion des taux d'imposition du revenu du travail. Dans le premier article, je trouve que lorsque le pouvoir de négociation des travailleurs est faible, la politique Ramsey-optimale appelle à un taux optimal d'inflation annuel significativement plus élevé, au-delà de 9.5%, qui est aussi très volatile, au-delà de 7.4%. Le gouvernement Ramsey utilise l'inflation pour induire des fluctuations efficaces dans les marchés du travail, malgré le fait que l'évolution des prix est coûteuse et malgré la présence de la fiscalité du travail variant dans le temps. Les résultats quantitatifs montrent clairement que le planificateur s'appuie plus fortement sur l'inflation, pas sur l'impôts, pour lisser les distorsions dans l'économie au cours du cycle économique. En effet, il ya un compromis tout à fait clair entre le taux optimal de l'inflation et sa volatilité et le taux d'impôt sur le revenu optimal et sa variabilité. Le plus faible est le degré de rigidité des prix, le plus élevé sont le taux d'inflation optimal et la volatilité de l'inflation et le plus faible sont le taux d'impôt optimal sur le revenu et la volatilité de l'impôt sur le revenu. Pour dix fois plus petit degré de rigidité des prix, le taux d'inflation optimal et sa volatilité augmentent remarquablement, plus de 58% et 10%, respectivement, et le taux d'impôt optimal sur le revenu et sa volatilité déclinent de façon spectaculaire. Ces résultats sont d'une grande importance étant donné que dans les modèles frictionnels du marché du travail sans politique budgétaire et monnaie, ou dans les Nouveaux cadres keynésien même avec un riche éventail de rigidités réelles et nominales et un minuscule degré de rigidité des prix, la stabilité des prix semble être l'objectif central de la politique monétaire optimale. En l'absence de politique budgétaire et la demande de monnaie, le taux d'inflation optimal tombe très proche de zéro, avec une volatilité environ 97 pour cent moins, compatible avec la littérature. Dans le deuxième article, je montre comment les résultats quantitatifs impliquent que le pouvoir de négociation des travailleurs et les coûts de l'aide sociale de règles monétaires sont liées négativement. Autrement dit, le plus faible est le pouvoir de négociation des travailleurs, le plus grand sont les coûts sociaux des règles de politique monétaire. Toutefois, dans un contraste saisissant par rapport à la littérature, les règles qui régissent à la production et à l'étroitesse du marché du travail entraînent des coûts de bien-être considérablement plus faible que la règle de ciblage de l'inflation. C'est en particulier le cas pour la règle qui répond à l'étroitesse du marché du travail. Les coûts de l'aide sociale aussi baisse remarquablement en augmentant la taille du coefficient de production dans les règles monétaires. Mes résultats indiquent qu'en augmentant le pouvoir de négociation du travailleur au niveau Hosios ou plus, les coûts de l'aide sociale des trois règles monétaires diminuent significativement et la réponse à la production ou à la étroitesse du marché du travail n'entraîne plus une baisse des coûts de bien-être moindre que la règle de ciblage de l'inflation, qui est en ligne avec la littérature existante. Dans le troisième article, je montre d'abord que la règle Friedman dans un modèle monétaire avec une contrainte de type cash-in-advance pour les entreprises n’est pas optimale lorsque le gouvernement pour financer ses dépenses a accès à des taxes à distorsion sur la consommation. Je soutiens donc que, la règle Friedman en présence de ces taxes à distorsion est optimale si nous supposons un modèle avec travaie raw-efficace où seule le travaie raw est soumis à la contrainte de type cash-in-advance et la fonction d'utilité est homothétique dans deux types de main-d'oeuvre et séparable dans la consommation. Lorsque la fonction de production présente des rendements constants à l'échelle, contrairement au modèle des produits de trésorerie de crédit que les prix de ces deux produits sont les mêmes, la règle Friedman est optimal même lorsque les taux de salaire sont différents. Si la fonction de production des rendements d'échelle croissant ou decroissant, pour avoir l'optimalité de la règle Friedman, les taux de salaire doivent être égales.
Resumo:
Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward. We consider two notions of optimality based on optimistic and pessimistic criteria. These have been analyzed for discounted BMDPs. Here we provide results for average reward BMDPs. We establish a fundamental relationship between the discounted and the average reward problems, prove the existence of Blackwell optimal policies and, for both notions of optimality, derive algorithms that converge to the optimal value function.
Resumo:
We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.
Resumo:
Cumulative arrays have played an important role in the early development of the secret sharing theory. They have not been subject to extensive study so far, as the secret sharing schemes built on them generally result in much larger sizes of shares, when compared with other conventional approaches. Recent works in threshold cryptography show that cumulative arrays may be the appropriate building blocks in non-homomorphic threshold cryptosystems where the conventional secret sharing methods are generally of no use. In this paper we study several extensions of cumulative arrays and show that some of these extensions significantly improve the performance of conventional cumulative arrays. In particular, we derive bounds on generalised cumulative arrays and show that the constructions based on perfect hash families are asymptotically optimal. We also introduce the concept of ramp perfect hash families as a generalisation of perfect hash families for the study of ramp secret sharing schemes and ramp cumulative arrays.
Resumo:
The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMMs). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters.
Resumo:
This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law
Resumo:
With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.
Resumo:
We consider the problem of controlling a Markov decision process (MDP) with a large state space, so as to minimize average cost. Since it is intractable to compete with the optimal policy for large scale problems, we pursue the more modest goal of competing with a low-dimensional family of policies. We use the dual linear programming formulation of the MDP average cost problem, in which the variable is a stationary distribution over state-action pairs, and we consider a neighborhood of a low-dimensional subset of the set of stationary distributions (defined in terms of state-action features) as the comparison class. We propose a technique based on stochastic convex optimization and give bounds that show that the performance of our algorithm approaches the best achievable by any policy in the comparison class. Most importantly, this result depends on the size of the comparison class, but not on the size of the state space. Preliminary experiments show the effectiveness of the proposed algorithm in a queuing application.