996 resultados para Asymptotic dynamics
Resumo:
We have performed Monte Carlo and molecular dynamics simulations of suspensions of monodisperse, hard ellipsoids of revolution. Hard-particle models play a key role in statistical mechanics. They are conceptually and computationally simple, and they offer insight into systems in which particle shape is important, including atomic, molecular, colloidal, and granular systems. In the high density phase diagram of prolate hard ellipsoids we have found a new crystal, which is more stable than the stretched FCC structure proposed previously . The new phase, SM2, has a simple monoclinic unit cell containing a basis of two ellipsoids with unequal orientations. The angle of inclination is very soft for length-to-width (aspect) ratio l/w=3, while the other angles are not. A symmetric state of the unit cell exists, related to the densest-known packings of ellipsoids; it is not always the stable one. Our results remove the stretched FCC structure for aspect ratio l/w=3 from the phase diagram of hard, uni-axial ellipsoids. We provide evidence that this holds between aspect ratios 3 and 6, and possibly beyond. Finally, ellipsoids in SM2 at l/w=1.55 exhibit end-over-end flipping, warranting studies of the cross-over to where this dynamics is not possible. Secondly, we studied the dynamics of nearly spherical ellipsoids. In equilibrium, they show a first-order transition from an isotropic phase to a rotator phase, where positions are crystalline but orientations are free. When over-compressing the isotropic phase into the rotator regime, we observed super-Arrhenius slowing down of diffusion and relaxation, and signatures of the cage effect. These features of glassy dynamics are sufficiently strong that asymptotic scaling laws of the Mode-Coupling Theory of the glass transition (MCT) could be tested, and were found to apply. We found strong coupling of positional and orientational degrees of freedom, leading to a common value for the MCT glass-transition volume fraction. Flipping modes were not slowed down significantly. We demonstrated that the results are independent of simulation method, as predicted by MCT. Further, we determined that even intra-cage motion is cooperative. We confirmed the presence of dynamical heterogeneities associated with the cage effect. The transit between cages was seen to occur on short time scales, compared to the time spent in cages; but the transit was shown not to involve displacements distinguishable in character from intra-cage motion. The presence of glassy dynamics was predicted by molecular MCT (MMCT). However, as MMCT disregards crystallization, a test by simulation was required. Glassy dynamics is unusual in monodisperse systems. Crystallization typically intervenes unless polydispersity, network-forming bonds or other asymmetries are introduced. We argue that particle anisometry acts as a sufficient source of disorder to prevent crystallization. This sheds new light on the question of which ingredients are required for glass formation.
Resumo:
Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.
Resumo:
The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.
Resumo:
The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
Although generalist predators have been reported to forage less efficiently than specialists, there is little information on the extent to which learning can improve the efficiency of mixed-prey foraging. Repeated exposure of silver perch to mixed prey (pelagic Artemia and benthic Chironomus larvae) led to substantial fluctuations in reward rate over relatively long (20-day) timescales. When perch that were familiar with a single prey type were offered two prey types simultaneously, the rate at which they captured both familiar and unfamiliar prey dropped progressively over succeeding trials. This result was not predicted by simple learning paradigms, but could be explained in terms of an interaction between learning and attention. Between-trial patterns in overall intake were complex and differed between the two prey types, but were unaffected by previous prey specialization. However, patterns of prey priority (i.e. the prey type that was preferred at the start of a trial) did vary with previous prey training. All groups of fish converged on the most profitable prey type (chironomids), but this process took 15-20 trials. In contrast, fish offered a single prey type reached asymptotic intake rates within five trials and retained high capture abilities for at least 5 weeks. Learning and memory allow fish to maximize foraging efficiency on patches of a single prey type. However, when foragers are faced with mixed prey populations, cognitive constraints associated with divided attention may impair efficiency, and this impairment can be exacerbated by experience. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).
Resumo:
We analyse the matrix momentum algorithm, which provides an efficient approximation to on-line Newton's method, by extending a recent statistical mechanics framework to include second order algorithms. We study the efficacy of this method when the Hessian is available and also consider a practical implementation which uses a single example estimate of the Hessian. The method is shown to provide excellent asymptotic performance, although the single example implementation is sensitive to the choice of training parameters. We conjecture that matrix momentum could provide efficient matrix inversion for other second order algorithms.
Resumo:
2000 Mathematics Subject Classification: 37D40.
Resumo:
A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.
Resumo:
We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.
Resumo:
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.
Resumo:
In this work, we introduce a new class of numerical schemes for rarefied gas dynamic problems described by collisional kinetic equations. The idea consists in reformulating the problem using a micro-macro decomposition and successively in solving the microscopic part by using asymptotic preserving Monte Carlo methods. We consider two types of decompositions, the first leading to the Euler system of gas dynamics while the second to the Navier-Stokes equations for the macroscopic part. In addition, the particle method which solves the microscopic part is designed in such a way that the global scheme becomes computationally less expensive as the solution approaches the equilibrium state as opposite to standard methods for kinetic equations which computational cost increases with the number of interactions. At the same time, the statistical error due to the particle part of the solution decreases as the system approach the equilibrium state. This causes the method to degenerate to the sole solution of the macroscopic hydrodynamic equations (Euler or Navier-Stokes) in the limit of infinite number of collisions. In a last part, we will show the behaviors of this new approach in comparisons to standard Monte Carlo techniques for solving the kinetic equation by testing it on different problems which typically arise in rarefied gas dynamic simulations.
Resumo:
Background: Partially clonal organisms are very common in nature, yet the influence of partial asexuality on the temporal dynamics of genetic diversity remains poorly understood. Mathematical models accounting for clonality predict deviations only for extremely rare sex and only towards mean inbreeding coefficient (F-IS) over bar < 0. Yet in partially clonal species, both F-IS < 0 and F-IS > 0 are frequently observed also in populations where there is evidence for a significant amount of sexual reproduction. Here, we studied the joint effects of partial clonality, mutation and genetic drift with a state-and-time discrete Markov chain model to describe the dynamics of F-IS over time under increasing rates of clonality. Results: Results of the mathematical model and simulations show that partial clonality slows down the asymptotic convergence to F-IS = 0. Thus, although clonality alone does not lead to departures from Hardy-Weinberg expectations once reached the final equilibrium state, both negative and positive F-IS values can arise transiently even at intermediate rates of clonality. More importantly, such "transient" departures from Hardy Weinberg proportions may last long as clonality tunes up the temporal variation of F-IS and reduces its rate of change over time, leading to a hyperbolic increase of the maximal time needed to reach the final mean (F-IS,F-infinity) over bar value expected at equilibrium. Conclusion: Our results argue for a dynamical interpretation of F-IS in clonal populations. Negative values cannot be interpreted as unequivocal evidence for extremely scarce sex but also as intermediate rates of clonality in finite populations. Complementary observations (e.g. frequency distribution of multiloci genotypes, population history) or time series data may help to discriminate between different possible conclusions on the extent of clonality when mean (F-IS) over bar values deviating from zero and/or a large variation of F-IS over loci are observed.