991 resultados para Asymptotic behaviour
Resumo:
We prove a new Morse-Sard-type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C-2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the p-regularity and its bridge toward the rho-regularity which implies topological triviality at infinity.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
Contrast masking from parallel grating surrounds (doughnuts) and superimposed orthogonal masks have different characteristics. However, it is not known whether the saturation of the underlying suppression that has been found for parallel doughnut masks depends on (i) relative mask and target orientation, (ii) stimulus eccentricity or (iii) surround suppression. We measured contrast-masking functions for target patches of grating in the fovea and in the periphery for cross-oriented superimposed and doughnut masks and parallel doughnut masks. When suppression was evident, the factor that determined whether it accelerated or saturated was whether the mask stimulus was crossed or parallel. There are at least two interpretations of the asymptotic behaviour of the parallel surround mask. (1) Suppression arises from pathways that saturate with (mask) contrast. (2) The target is processed by a mechanism that is subject to surround suppression at low target contrasts, but a less sensitive mechanism that is immune from surround suppression ‘breaks through’ at higher target contrasts. If the mask can be made less potent, then masking functions should shift downwards, and sideways for the two accounts, respectively. We manipulated the potency of the mask by varying the size of the hole in a parallel doughnut mask. The results provided strong evidence for the first account but not the second. On the view that response compression becomes more severe progressing up the visual pathway, our results suggest that superimposed cross-orientation suppression precedes orientation tuned surround suppression. These results also reveal a previously unrecognized similarity between surround suppression and crowding (Pelli, Palomares, & Majaj, 2004).
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.
Resumo:
2000 Mathematics Subject Classification: 60F05, 60B10.
Resumo:
2000 Mathematics Subject Classification: 05A16, 05A17.
Resumo:
2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.
Resumo:
2000 Mathematics Subject Classification: 35Lxx, 35Pxx, 81Uxx, 83Cxx.
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Resumo:
This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.