681 resultados para Antitumor
Resumo:
The aim of the present study was to determine the effect of the combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and adriamycin (ADM) on the human breast cancer cell line MCF-7 and to identify potential mechanisms of apoptosis. Cell viability was analyzed by the MTT assay and the synergistic effect was assessed by the Webb coefficient. Apoptosis was quantified using the annexin V-FITC and propidium iodide staining flow cytometry. The mRNA expression of TRAIL receptors was measured by RT-PCR. Changes in the quantities of Bax and caspase-9 proteins were determined by Western blot. MCF-7 cells were relatively resistant to TRAIL (IC50 >10 µg/mL), while MCF-7 cells were sensitive to ADM (IC50 <10 µg/mL). A subtoxic concentration of ADM (0.5 µg/mL) combined with 0.1, 1, or 10 µg/mL TRAIL had a synergistic cytotoxic effect on MCF-7 cells, which was more marked with the combination of TRAIL (0.1 µg/mL) and ADM (0.5 µg/mL). In addition, the combined treatment with TRAIL and ADM significantly increased cell apoptosis from 9.8% (TRAIL) or 17% (ADM) to 38.7%, resulting in a synergistic apoptotic effect, which is proposed to be mediated by up-regulation of DR4 and DR5 mRNA expression and increased expression of Bax and caspase-9 proteins. These results suggest that the combination of TRAIL and ADM might be a promising therapy for breast cancer.
Resumo:
Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.
Resumo:
New hetaryl- and alkylidenerhodanine derivatives 3a-d, 3e, and 4a-d were prepared from heterocyclic aldehydes 1a-d or acetaldehyde 1e. The treatment of several rhodanine derivatives 3a-d and 3e with piperidine or morpholine in THF under reflux, afforded (Z)-5-(hetarylmethylidene)-2-(piperidin-1-yl) thiazol-4(5H)-ones and 2-morpholinothiazol-4(5H)-ones 5a-d, 6a-d, and (Z)-5-ethylidene-2-morpholinothiazol-4(5H)-one (5e), respectively, in good yields. Structures of all compounds were determined by IR, 1D and 2D NMR and mass spectrometry. Several of these compounds were screened by the U.S. National Cancer Institute (NCI) to assess their antitumor activity against 60 different human tumor cell lines. Compound 3c showed high activity against HOP-92 (Non-Small Cell Lung Cancer), which was the most sensitive cell line, with GI(50) = 0.62 mu M and LC50 > 100 mu M from the in vitro assays. In vitro antifungal activity of these compounds was also determined against 10 fungal strains. Compound 3e showed activity against all fungal strains tested, but showed high activity against Saccharomyces cerevisiae (MIC 3.9 mu g/mL).
Resumo:
6-[4-(2-Methoxyethoxy)phenyl]fulvene (3a) and 6-(4-[2-(di-methylamino)ethoxy]phenyl)fulvene (3b) were prepared as starting materials for the synthesis of three dofferent classes of titanocenes, which are ansa-titanocenes, diarylmethyl-substituted titanicenes and benzyl-substituted titanocenes and benyzyl-subtituted titanocenes. Because the synthetic possibilities seem to be limited, only ansa-titanocene {1,2-bis(cyclopentadienyl)-1,2-bis[4-(2-methoxyethoxy)phenyl]ethanediyl}titanium dichloride (4a) and benzyl-substituted titanocene bis-{[4-(2-methoxyethoxy)benzyl]cyclopentadienyl}titantium(IV) dichloride (6a) were obtained and characterised. The change in the substitution pattern f the phenyl moiety from an oxygen atom to a nitrogen atom had such a big influence on the reaction that not one compound of the threee titanocene classes could be synthesised, and it was also not possible to obtain diarylmethyl-substituted titanocenes with the use of either of the fulvenes. When benzyl-substituted titanocene 6a was tested agianst pig kidney cells (LLC-PK), an antiproliferative effect that result in an IC50 value of 43 mu m, was observed. This IC50 value is in the lower range of the cytotoxicities evaluated for titanocenes up to now. ansa-Titanocene 4a surprisingly showed, when tested on the same cell line, a proliferative effect together with a fast rate of hydrolysis.
Resumo:
Chemotherapeutic options for androgen-independent prostate cancer are extremely limited with minimum survival advantage. The benzyl-substituted unbridged titanocene bis-[(p-methoxybenzyl) cyclopentadienyl] titanium(IV) dichloride (Titanocene Y) was tested in vitro against the human prostate cancer androgen-independent cell, PC-3, which demonstrated an IC50 value of 56 x 10(-6) mol/L compared to 5.6 x 10(-6) mol/L for cisplatin. Then Titanocene Y was given at the maximum tolerable dose of 40 mg/kg/d on five consecutive days to one cohort of eight PC3 tumor-bearing male NMRI: nu/nu mice, while a second cohort was treated similarly with 3 mg/kg/d of cisplatin. Both of these mouse cohorts showed a statistically significant tumor growth reduction with respect to the third solvent-treated control group, which led to T/C values of 42% for cisplatin and 52% for Titanocene Y at the end of the experiment. This encouraging activity of Titanocene Y against prostate tumors in vivo, which is almost comparable with respect to cisplatin hopefully leads to further development of Titanocene Y in the future.
Resumo:
Bis-[(p-methoxybenzyl)cyclopentadienyl] titanium dichloride, better known as Titanocene Y, is a newly synthesized transition metal-based anticancer drug. We studied the antitumor activity of Titanocene Y with concentrations of 2.1, 21 and 210 mu mol/l against a freshly explanted human breast cancer, using an in-vitro soft agar cloning system. The sensitivity against Titanocene Y was highly remarkable in the breast cancer tumor in the full concentration range. Titanocene Y showed cell death induction at 2.1 mu mol/l, well comparable to cisplatin, given at a concentration of 1.0 mu mol/l. A further preclinical development of Titanocene Y was warranted and therefore an MCF-7 human breast cancer xenograft nonobese diabetic/severe combined immunodeficient mouse model was used. Titanocene Y was given for 21 days at 30 mg/kg/ day (75% of the maximum tolerable dose of Titanocene Y), which resulted in the reduction of the tumor volume to around one-third, whereas no mouse was lost because of the surprisingly low toxicity of Titanocene Y.
Resumo:
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.
Resumo:
We wish to report here our initial efforts toward the total synthesis of the potent antitumor agent dictyostatin, describing a short and efficient synthesis of the C11-C23 fragment. ( (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
This study describes the synthesis of a new ruthenium nitrosyl complex with the formula [RuCl(2)NO(BPA)] [BPA = (2-hydroxybenzyl)(2-methylpyridyl)amine ion], which was synthesized and characterized by spectroscopy, cyclic voltammetry, X-ray crystallography, and theoretical calculation data. The biological studies of this complex included in vitro cytotoxic assays, which revealed its activity against two different tumor cell lines (HeLa and Tm5), with efficacy comparable to that of cisplatin, a metal-based drug that is administered in clinical treatment. The in vivo studies showed that [RuCl2NO(BPA)] is effective in reducing tumor mass. Also, our results suggest that the mechanism of action of [RuCl(2)NO(BPA)] includes binding to DNA, causing fragmentation of this biological molecule, which leads to apoptosis. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Complexes of the type trans-[PdX(2)(isn)(2)] {X = Cl (1), N(3) (2), SCN (3), NCO (4); isn = isonicotinamide} were synthesized and evaluated for in vitro antimycobacterial and antitumor activities. The coordination mode of the isonicotinamide and the pseudohalide ligands was inferred by IR spectroscopy. Single crystal X-ray diffraction determination on 2 showed that coordination geometry around Pd(II) is nearly square planar, with the ligands in a trans configuration. All the compounds demonstrated better in vitro activity against Mycobacterium tuberculosis than isonicotinamide and pyrazinamide. Among the complexes, compound 2 was found to be the most active with MIC of 35.89 mu M. Complexes 1-4 were also screened for their in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Purpose: High-risk human papillomavirus (HPV) is the main etiologic factor for cervical cancer. The severity of HPV-associated cervical lesions has been correlated to the number of infiltrating macrophages. The objective of this work is to characterize the role of tumor-associated macrophages (TAM) on the immune cellular response against the tumor. Experimental Design: We used the HPV16 E6- and E7-expressing TC-1 mouse tumor model to study the effect of TAM on T-cell function in vitro, and depleted TAM, using clodronate-containing liposomes, to characterize its role in vivo. Results: TAM, characterized by the positive expression of CD45, F4/80, and CD11b, formed the major population of infiltrating tumor cells. TAM displayed high basal Arginase I activity, producing interleukin-10 (IL-10); they were resistant to iNOSll activity induction, therefore reversion to M1 phenotype, when stimulated in vitro with lipopolysaccharide/IFN gamma, indicating an M2 phentoype. In cultures of isolated TAM, TAM induced regulatory phenotype, characterized by IL-10 and Foxp3 expression, and inhibited proliferation of CD8 lymphocytes. In vivo, depletion of TAM inhibited tumor growth and stimulated the infiltration of tumors by HPV16 E7(49-57)-specific CD8 lymphocytes, whereas depletion of Gr1(+) tumor-associated cells had no effect. Conclusions: M2-like macrophages infiltrate HPV16-associated tumors causing suppression of antitumor T-cell response, thus facilitating tumor growth. Depletion or phenotype alteration of this population should be considered in immunotherapy strategies.
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
The first synthesis of the natural product (+)-mutisianthol was accomplished in 11 steps and in 21% overall yield from 2-methylanisole. The synthesis of its enantiomer was also performed in a similar overall yield. The absolute configuration of the sesquiterpene (+)-mutisianthol was assigned as (1S,3R). Key steps in the route are the asymmetric hydrogenation of a nonfunctionalized olefin using chiral iridium catalysts and the ring contraction of 1,2-dihydronaphthalenes using thallium(III) or iodine(III). The target molecules show moderate activity against the human tumor cell lines SF-295, HCT-8, and MDA-MB-435.