998 resultados para Anabaena sp PCC 7120


Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文通过对蓝细菌Synechocystis sp. PCC 6803在添加葡萄糖、Na2S203的BG-11培养基中的生长特性、脂类及脂肪酸组成、细胞低温荧光、色素组成进行分析测定,总结出如下规律: 当蓝细菌Synechocystis sp. PCC 6803在添加有葡萄糖的BG-11培养基中培养时细胞出现了一种新的糖脂(记为糖脂-x),在添加果糖、麦芽糖、乳糖等其它碳源的培养基中生长的细胞中也检测到糖脂-x糖脂-x的出现经推测是与活性氧相作用的产物,当在含糖的培养基中加入活性氧猝灭剂Na2S203时能有效地抑制糖脂-x的出现。糖脂一x的出现伴随着其它脂、尤其是双半乳糖甘油二酯(DGDG)的含量下降,这可能与细胞营养代谢类型的转变相适应。糖脂-x的出现使细胞适应异养生长条件,这时藻胆体(PBS),光系统II(PSII),光系统I(PSD降解,叶绿素消失。 糖脂-x经1H-NMR波谱术检测证实为甘油糖脂,经气质联谱分析其脂肪酸组成中含大量的枝链脂肪酸,12-甲基十四碳酸、12-甲基十五碳酸、12-甲基十六碳酸以及两种稀有的含氮脂肪酸。这些脂肪酸在添加高浓度葡萄糖的培养基中生长的.Synechocystis sp. PCC 6803中的单半乳糖甘油二酯(MGDG)也能检测到。ESI-MS以及P-SI-MS测定结果表明糖脂.x含一分子的脂酰基侧链以及两分子的己糖,半乳糖与葡萄糖。 对.Synechocystis sp. PCC 6803生长在不同浓度的葡萄糖与Na2S203培养基中脂类组成与脂肪酸组成进行比较,发现Na2S203能有效地增加膜脂中硫代异鼠李糖二酰基甘油(SQDG)和磷脂酰甘油(PG)的百分含量,培养基中同时添加葡萄糖时能抵消Na2S203的这一效应。此外,Na2S203能显著增加单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)中十六碳酸(C16:0)的百分含量,这一效应也能为葡萄糖恢复。Na2S203不能显著地改变SQDG中C16:0的百分含量,加入葡萄糖时能降低C16:0的百分含量。这些结果说明Na2S203可能充当一种还原剂使膜脂处于一种低的不饱和状态,同时加入葡萄糖时能降低Na2S203的还原力。此外,Na2S203还可作为SQDG合成中的硫供体。 用HPLC测定.Synechocystis sp. PCC 6803在添加不同浓度的Na2S203,葡萄糖的BG-11培养基中生长时的叶绿素与类胡萝卜素浓度,结果表明葡萄糖表现出对叶绿素与类胡萝卜素水平的抑制效应,Na2S203在低浓度时表现出对叶绿素与类胡萝卜素水平的促进效应,但在高浓度时表现出抑制效应。因此适当浓度的Na2S203的加入有利于维持蓝细菌在培养基中添加葡萄糖的生长条件下的低水平自由基,能使葡萄糖表现出促进细胞生长的特性。 通过测定Synechocystis sp. PCC 6803生长曲线中葡萄糖、Na2S203的浓度效应,结果表明葡萄糖在低浓度(例如5 mmoI.L-l)时表现出促进细胞的生长,在相对高的浓度表现出抑制细胞生长的效应。在培养基中同时加入Na2S203时可恢复葡萄糖对细胞的生长的促进效应。单独加入Na2S203表现出对细胞生长的抑制效应。这说明葡萄糖、Na2S203对细胞的生长存在着正的协同效应。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在室内模拟条件下,采用正交设计法建立了一种由蛋白核小球藻(Chlorella pyrenoidosa)、鱼腥藻7120(Anabaena sp.PCC7120)、硝化细菌(Nitrate bacteria)和荚膜红假单胞菌(Rhodopseudomonas capsulata)组成的复合藻-菌净化系统去除造纸废液中有机质和氨态氮的最优化模型,确定了藻类与细菌的最优化数量配比关系为蛋白核小球藻∶鱼腥藻7120∶硝化细菌∶荚膜红假单胞菌=1∶2.17∶2.83∶5.09.比较了复合藻-菌净化系统最优化模型与单

Relevância:

100.00% 100.00%

Publicador:

Resumo:

应用RAPD-PCR的方法,选用24个随机引物,分析来自不同地区的7株微囊藻的基因组多态性。结果显示,Microcystis.viridis及M.wesenbergii明显与M.aeruginosa区分开。M.aeruginosa分为两个可视为不同种的异源分类单位。作为对照的Anabaena sp.7120与其他微囊藻株表现出完全不同的基因型及更远的遗传距离。 此项研究表明,以基因型而不是表现型为基础,分析蓝藻种内及种间区别是可能的。因此,为解决蓝藻分类问题,特别是在种和属的水平上,提供了重要的线索。结合

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU (3(3,4 dichlorophenyl) 1,1 dimethyl urea) induced state 1 and dark adaptation induced state 2 in both wild-type and mutant cells as determined by 77K fluorescence emission spectroscopy. Light-induced transitions were observed in the wildtype after preferential excitation of phycocyanin (state 2) or preferential excitation of chlorophyll .a. (state 1). The state 1 and 2 transitions in the wild-type had half-times of approximately 10 seconds. Cytochrome f and P-700 oxidation kinetics could not be correlated with any current state transition model as cells in state 1 showed faster oxidation kinetics regardless of excitation wavelength. Light-induced transitions were also observed in the phycobilisomeless mutant after preferential excitation of short wavelength chlorophyll !l. (state 2) or carotenoids and long wavelength chlorophyll it (state 1). One-dimensional electrophoresis revealed no significant differences in phosphorylation patterns of resolved proteins between wild-type cells in state 1 and state 2. It is concluded that the mechanism of the light state transition in cyanobacteria does not require the presence of the phycobilisome. The results contradict proposed models for the state transition which require an active role for the phycobilisome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of low temperature on cell growth, photosynthesis, photoinhibition, and nitrate assimilation was examined in the cyanobacterium Synechococcus sp. PCC 6301 to determine the factor that limits growth. Synechococcus sp. PCC 6301 grew exponentially between 20°C and 38°C, the growth rate decreased with decreasing temperature, and growth ceased at 15°C. The rate of photosynthetic oxygen evolution decreased more slowly with temperature than the growth rate, and more than 20% of the activity at 38°C remained at 15°C. Oxygen evolution was rapidly inactivated at high light intensity (3 mE m−2 s−1) at 15°C. Little or no loss of oxygen evolution was observed under the normal light intensity (250 μE m−2 s−1) for growth at 15°C. The decrease in the rate of nitrate consumption by cells as a function of temperature was similar to the decrease in the growth rate. Cells could not actively take up nitrate or nitrite at 15°C, although nitrate reductase and nitrite reductase were still active. These data demonstrate that growth at low temperature is not limited by a decrease in the rate of photosynthetic electron transport or by photoinhibition, but that inactivation of the nitrate/nitrite transporter limits growth at low temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several mutant strains of Synechocystis sp. PCC 6803 with large deletions in the D-E loop of the photosystem II (PSII) reaction center polypeptide D1 were subjected to high light to investigate the role of this hydrophilic loop in the photoinhibition cascade of PSII. The tolerance of PSII to photoinhibition in the autotrophic mutant ΔR225-F239 (PD), when oxygen evolution was monitored with 2,6-dichloro-p-benzoquinone and the equal susceptibility compared with control when monitored with bicarbonate, suggested an inactivation of the QB-binding niche as the first event in the photoinhibition cascade in vivo. This step in PD was largely reversible at low light without the need for protein synthesis. Only the next event, inactivation of QA reduction, was irreversible and gave a signal for D1 polypeptide degradation. The heterotrophic deletion mutants ΔG240-V249 and ΔR225-V249 had severely modified QB pockets, yet exhibited high rates of 2,6-dichloro-p-benzoquinone-mediated oxygen evolution and less tolerance to photoinhibition than PD. Moreover, the protein-synthesis-dependent recovery of PSII from photoinhibition was impaired in the ΔG240-V249 and ΔR225-V249 mutants because of the effects of the mutations on the expression of the psbA-2 gene. No specific sequences in the D-E loop were found to be essential for high rates of D1 polypeptide degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eutrophication and enhanced internal nutrient loading of the Baltic Sea are most clearly reflected by increased late-summer cyanobacterial blooms, which often are toxic. In addition to their toxicity to animals, phytoplankton species can be allelopathic, which means that they produce chemicals that inhibit competing phytoplankton species. Such interspecific chemical warfare may lead to the formation of harmful phytoplankton blooms and the spread of exotic species into new habitats. This is the first report on allelopathic effects in brackish-water cyanobacteria. The experimental studies presented in this thesis showed that the filamentous cyanobacteria Anabaena sp., Aphanizomenon flos-aquae and Nodularia spumigena are capable of decreasing the growth of other phytoplankton species, especially cryptophytes, but also diatoms. The detected allelopathic effects are rather transitory, and some co-occurring species show tolerance to them. The allelochemicals are excreted during active growth and they decrease cell numbers, chlorophyll a content and carbon uptake of the target species. Although the more specific modes of action or chemical structures of the allelochemicals remain to be studied, the results clearly indicate that the allelopathic effects are not caused by the hepatotoxin, nodularin. On the other hand, cyanobacteria stimulated the growth of bacteria, other cyanobacteria, chlorophytes and flagellates in a natural phytoplankton community. In a long-term data analysis of phytoplankton abundances and hydrography of the northern Baltic Sea, a clear change was observed in phytoplankton community structure, together with a transition in environmental factors, between the late 1970s and early 2000s. Surface water salinity decreased, whereas water temperature and the concentration of dissolved inorganic nitrogen increased. In the phytoplankton community, the biomass of cyanobacteria, chrysophytes and chlorophytes significantly increased, and the late-summer phytoplankton community became increasingly cyanobacteria-dominated. In contrast, the biomass of cryptophytes decreased. The increased temperature and nutrient concentrations probably explain most of the changes in phytoplankton, but my results suggest that the possible effect of chemically mediated biological interactions should also be considered. Cyanobacterial allelochemicals can cause additional stress to other phytoplankton in the nutrient-depleted late-summer environment and thus contribute to the formation and persistence of long-lasting cyanobacterial mass occurrences. On the other hand, cyanobacterial blooms may either directly or indirectly promote the growth of some phytoplankton species. Therefore, a further increase in cyanobacteria will probably shape the late-summer pelagic phytoplankton community by stimulating some species, but inhibiting others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgas e cianobactérias têm sido amplamente recomendadas para biomonitoração de metais pesados e outros poluentes, sendo considerados indicadores sensíveis às alterações ambientais e utilizados como organismos testes na regulamentação dos níveis de metal. Estes micro-organismos fotossintetizantes são produtores primários da base da cadeia alimentar aquática e são os primeiros a serem afetados pela poluição por metais pesados. O cobre é um metal normalmente considerado como nutriente essencial para a vida aquática mas pode ser tóxico para algumas espécies. Portanto, neste estudo foram avaliados o efeito tóxico e a bioacumulação de cobre (II) em quatro espécies de micro-organismos fotoautotróficos componentes do fitoplâncton dulcícola, duas cianobactérias filamentosas (Anabaena sp. e Oscillatoria sp) e duas microalgas da classe das clorofíceas (Monorraphidium sp. e Scenedesmus sp.). O meio de cultivo utilizado nos ensaios foi o ASM-1 com e sem a presença de cobre (0,6 mg/L a 12 mg Cu2+/L) onde, o efeito tóxico do metal foi monitorado por contagem celular para as microalgas e por peso seco para as cianobactérias. A bioacumulação do metal foi avaliada da mesma forma para todos os micro-organismos, através de coletas de amostras no decorrer do experimento e determinação da concentração de cobre em solução por espectrometria de absorção atômica com chama. Os resultados obtidos mostram que o efeito tóxico do metal é diretamente proporcional à concentração inicial para os micro-organismos estudados, mas que o cobre (II) foi mais tóxico para as cianobactérias que para as microalgas verdes. A bioacumulação teve uma relação direta com o efeito tóxico do metal sobre os micro-organismos. Os resultados obtidos permitem sugerir que cobre (II) tem efeito negativo no fitoplâncton, inibindo o crescimento e alterando parâmetros metabólicos como a fotossíntese. A bioacumulação do metal pode comprometer os níveis tróficos da cadeia alimentar, afetando seu transporte para seres superiores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

分离自新疆干旱荒漠地区的固氮蓝藻Nostoc spp.被证明具有较高的乙炔还原活性和特异抗逆性。为了保存Nostoc spp.的优良遗传性状和今后研究所需,我们以EMBL4噬菌体为载体,以Sau3AI部分酶解的15-22kb DNA片段为供体,构建了Nostoc spp.的基因组文库。以克氏肺炎杆菌和Anabaena sp. PCC7120的nifHDK DNA片段为探针,通过三轮噬菌斑原位杂交,成功地从基因文库中分离到了六个重组噬菌体阳性克隆。Southern杂交验证插入片段含有Nostoc spp.的固氮酶结构基因序列,并对其限制酶切图谱作了初步分析。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary toxicity trials conducted with "Algistat" (an algicide) indicated that a dose of 0,66ppm of the compound was highly toxic to fish and 0.8ppm was the general lethal level for Spirogyra sp. The blue green algae, Oscillatoria sp., Mycrocystis sp. and Anabaena sp. were adversely affected by dosages higher than 0.5 ppm Euglena sp. was not affected even at 1.0 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

磷脂酰甘油(phosphatidylglycerol, PG)是类囊体膜(也叫光合膜)中唯一的一种磷脂。在蓝藻中,PG的合成途径为:磷脂酸(phosphatidic acid, PA)胞嘧啶双磷酸-二酰基甘油 (cytidine diphosphate diacylglycerol, CDP-DAG) 磷酸磷脂酰甘油 (phosphatidylglycerol phosphate, PGP)PG。其中最后一步反应是由PGP去磷酸化而生成PG,催化该反应的是PGP磷酸酶。然而迄今为止,PGP磷酸酶还没有在蓝藻和高等植物中得到克隆和鉴定。本工作在鱼腥藻Anabaena sp. PCC7120中通过将一个可能编码PGP磷酸酶的基因(alr1715)进行突变,获得缺失PG的突变体。与野生型相比,该突变体PG的含量降低了30%左右。突变后的蓝藻藻丝发黄、生长缓慢,叶绿素含量降低。整体细胞的光合作用活性、光系统II(photosystem II,PSII)的放氧活性以及PSII反应中心的光能转化效率显著下降,传递给PSII的激发能减少。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用双相法结合蔗糖密度梯度超离心制备获得高纯度的鱼腥藻PCC7120(Anabaena sp.PCC7120)外膜,以双向凝胶电泳分析受缺铁诱导的外膜蛋白。发现缺铁导致5种外膜蛋白水平显著上调,经MALDI-TOF-MS鉴定都是类似siderophore受体的蛋白。通过细菌荧光素酶报告基因luxAB研究相应基因的转录调控,发现它们在转录水平受缺铁诱导,并且响应缺铁诱导的表达模式存在差异。利用luxAB检测其中一些启动子的表达有可能用于水体中可利用铁离子的生物监测。