937 resultados para Advanced mathematical thinking
Resumo:
When it comes to teaching physics in the early years of elementary school, the first question is: but there are opportunities to teach concepts to children of such complexity? This study sought to examine approaches and strategies to enter the Basic Education in Physics. To this end, we used low cost materials testing, taking as its starting point the work of Ferreira (1978) instrumentation for Teaching Physics, particularly with the theme electrostatics. The present study was made from the use of prototypes developed with the materials cited. Observations were made in the classroom looking for, from the records of teaching, analyzing the behavior of children and their arguments, possibilities for Physics Teaching this age group as well as some evidence of their cognitive development. In teaching discussions were held with students of the early years of elementary school involving conceptual and phenomenological aspects, adapting such knowledge at the level of logical and mathematical thinking that was still under development. The work shows that it is possible to work on electrostatic physical concepts with children belonging to the age group of nine to ten years. With the support of the group Pibid Physics city of Rio Claro, I realize my observations and practices at the Municipal School Marcelo Schmidt, which proved to be available and open for acceptance of this proposal
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
This study offers an analysis of classification of the main issues of logic and logical thinking found in competitive tendering and math tests, according to their concepts and characteristics, whether involving mathematics, or not. Moreover, a research on the evolutionary historic processes of logic according to three major crises of the foundations of mathematics was conducted. This research helped to define Logic as a science that is quite distinctive from Mathematics. In order to relate the logical and the mathematical thinking, three types of knowledge, according to Piaget, were presented, with the logical-mathematical one being among them. The study also includes an insight on the basic concepts of propositional and predicative logic, which aids in the classification of issues of logical thinking, formal logic or related to algebraic, and geometric or arithmetic knowledge, according to the Venn diagrams. Furthermore, the key problems - that are most frequently found in tests are resolved and classified, as it was previously described. As a result, the classification in question was created and exemplified with eighteen logic problems, duly solved and explained
Resumo:
In this action research study of my classroom of 10th grade geometry students, I investigated how students learn to communicate mathematics in a written form. The purpose of the study is to encourage students to express their mathematical thinking clearly by developing their communication skills. I discovered that although students struggled with the writing assignments, they were more comfortable with making comments, writing questions and offering suggestions through their journal rather than vocally in class. I have utilized teaching strategies for English Language Learners, but I had never asked the students if these strategies actually improved their learning. I have high expectations, and have not changed that, but I soon learned that I did not want to start the development of students’ written communication skills by having the students write a math solution. I began having my students write after teaching them to take notes and modeling it for them. Through entries in the journals, I learned how taking notes best helped them in their pursuit of mathematical knowledge. As a result of this research, I plan to use journals more in each of my classes, not just a select class. I also better understand the importance of stressing that students take notes, showing them how to do that, and the reasons notes best help English Language Learners.
Resumo:
In this action research study, I investigated the use of journaling in my seventh grade mathematics classroom. I discovered that journaling can be a very rewarding and beneficial experience for me and for my students. Through journaling, my students became more adept at using correct mathematical terminology in writing and in speaking. The students also believed that they learned the content more deeply and retained it better. Additionally, implementing mathematical journals caused me to emphasize the use of correct terminology and thorough explanations of mathematical thinking in classroom discussions. As a result of this research, I plan to refine my journaling process and continue to use mathematical journals with my future classes.
Resumo:
This study offers an analysis of classification of the main issues of logic and logical thinking found in competitive tendering and math tests, according to their concepts and characteristics, whether involving mathematics, or not. Moreover, a research on the evolutionary historic processes of logic according to three major crises of the foundations of mathematics was conducted. This research helped to define Logic as a science that is quite distinctive from Mathematics. In order to relate the logical and the mathematical thinking, three types of knowledge, according to Piaget, were presented, with the logical-mathematical one being among them. The study also includes an insight on the basic concepts of propositional and predicative logic, which aids in the classification of issues of logical thinking, formal logic or related to algebraic, and geometric or arithmetic knowledge, according to the Venn diagrams. Furthermore, the key problems - that are most frequently found in tests are resolved and classified, as it was previously described. As a result, the classification in question was created and exemplified with eighteen logic problems, duly solved and explained
Resumo:
The ever increasing demand for new services from users who want high-quality broadband services while on the move, is straining the efficiency of current spectrum allocation paradigms, leading to an overall feeling of spectrum scarcity. In order to circumvent this problem, two possible solutions are being investigated: (i) implementing new technologies capable of accessing the temporarily/locally unused bands, without interfering with the licensed services, like Cognitive Radios; (ii) release some spectrum bands thanks to new services providing higher spectral efficiency, e.g., DVB-T, and allocate them to new wireless systems. These two approaches are promising, but also pose novel coexistence and interference management challenges to deal with. In particular, the deployment of devices such as Cognitive Radio, characterized by the inherent unplanned, irregular and random locations of the network nodes, require advanced mathematical techniques in order to explicitly model their spatial distribution. In such context, the system performance and optimization are strongly dependent on this spatial configuration. On the other hand, allocating some released spectrum bands to other wireless services poses severe coexistence issues with all the pre-existing services on the same or adjacent spectrum bands. In this thesis, these methodologies for better spectrum usage are investigated. In particular, using Stochastic Geometry theory, a novel mathematical framework is introduced for cognitive networks, providing a closed-form expression for coverage probability and a single-integral form for average downlink rate and Average Symbol Error Probability. Then, focusing on more regulatory aspects, interference challenges between DVB-T and LTE systems are analysed proposing a versatile methodology for their proper coexistence. Moreover, the studies performed inside the CEPT SE43 working group on the amount of spectrum potentially available to Cognitive Radios and an analysis of the Hidden Node problem are provided. Finally, a study on the extension of cognitive technologies to Hybrid Satellite Terrestrial Systems is proposed.
Resumo:
An elementary discussion of some of the mathematics employed in studying Quantum Chemistry in a style appropriate for persons who have not taken advanced mathematical instruction.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Esta investigación presenta un estudio cuyo objetivo es identificar aspectos que apoyan el desarrollo de la mirada profesional en estudiantes para profesores de matemáticas en un contexto b-learning. Analizamos las producciones de un grupo de estudiantes para profesores de matemáticas de educación secundaria (documentos escritos y participaciones en un debate on-line) cuando analizaban el razonamiento proporcional de estudiantes de educación secundaria. Los resultados indican que la interacción en el debate en línea permitió a algunos estudiantes para profesor mejorar su capacidad de identificar e interpretar aspectos relevantes del pensamiento matemático de los estudiantes de educación secundaria. Estos resultados indican que el desarrollo de “una mirada profesional” del profesor es un proceso complicado pero que la posibilidad de construir un discurso progresivo en línea es un factor importante para su desarrollo.
Resumo:
The aim of this research is to identify aspects that support the development of prospective mathematics teachers’ professional noticing in a b-learning context. The study presented here investigates the extent to which prospective secondary mathematics teachers attend and interpret secondary school students’ proportional reasoning and decide how to respond. Results show that interactions in an on-line discussion improve prospective mathematics teachers’ ability to identify and interpret important aspects of secondary school students’ mathematical thinking.
Resumo:
The aim of this research is to characterize the coordination of the processes of approximation related to the understanding of the limit of a function. We analyze the answers of 64 post-secondary school students to 7 problems considering the dynamic and metric conception of limit of a function. Results indicate that the metric understanding of the limit in terms of inequality supports that the student is capable of coordinating the approximations in the domain and in the range when lateral approximations coincide. However, the student is not capable of this coordination when lateral approximations do not coincide. This indicates that the metric understanding of the limit begins with the previous construction of the dynamic conception in case of coincidence of the lateral approximations in the range.
Resumo:
La competencia docente del maestro ―mirar con sentido el pensamiento matemático de los estudiantes implica identificar los hechos relevantes e interpretarlos para dotarlos de significado y poder tomar decisiones de acción. Este estudio se centra en caracterizar la competencia ―mirar con sentido el pensamiento matemático de los estudiantes en el dominio específico del razonamiento proporcional. Los análisis realizados han permitido identificar y caracterizar cuatro niveles de desarrollo considerando la manera en la que los estudiantes para maestro identifican e interpretaban aspectos del razonamiento proporcional a partir de las respuestas de estudiantes a problemas proporcionales y no proporcionales.