998 resultados para Adhesion Force


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001-1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding friction and adhesion in static and sliding contact of surfaces is important in numerous physical phenomena and technological applications. Most surfaces are rough at the microscale, and thus the real area of contact is only a fraction of the nominal area. The macroscopic frictional and adhesive response is determined by the collective behavior of the population of evolving and interacting microscopic contacts. This collective behavior can be very different from the behavior of individual contacts. It is thus important to understand how the macroscopic response emerges from the microscopic one. In this thesis, we develop a theoretical and computational framework to study the collective behavior. Our philosophy is to assume a simple behavior of a single asperity and study the collective response of an ensemble. Our work bridges the existing well-developed studies of single asperities with phenomenological laws that describe macroscopic rate-and-state behavior of frictional interfaces. We find that many aspects of the macroscopic behavior are robust with respect to the microscopic response. This explains why qualitatively similar frictional features are seen for a diverse range of materials. We first show that the collective response of an ensemble of one-dimensional independent viscoelastic elements interacting through a mean field reproduces many qualitative features of static and sliding friction evolution. The resulting macroscopic behavior is different from the microscopic one: for example, even if each contact is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The framework is then extended to incorporate three-dimensional rough surfaces, long- range elastic interactions between contacts, and time-dependent material behaviors such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dominates and the elastic interactions, though important from a quantitative perspective, do not change the qualitative macroscopic response. Finally, we examine the effect of adhesion on the frictional response as well as develop a force threshold model for adhesion and mode I interfacial cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental data have demonstrated that mushroom-shaped fibrils adhere much better to smooth substrates than punch-shaped fibrils. We present a model that suggests that detachment processes for such fibrils are controlled by defects in the contact area that are confined to its outer edge. Stress analysis of the adhered fibril, carried out for both punch and mushroom shapes with and without friction, suggests that defects near the edge of the adhesion area are much more damaging to the pull-off strength in the case of the punch than for the mushroom. The simulations show that the punch has a higher driving force for extension of small edge defects compared with the mushroom adhesion. The ratio of the pull-off force for the mushroom to that of the punch can be predicted from these simulations to be much greater than 20 in the friction-free case, similar to the experimental value. In the case of sticking friction, a ratio of 14 can be deduced. Our analysis also offers a possible explanation for the evolution of asymmetric mushroom shapes (spatulae) in the adhesion organ of geckos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal "heel" pads (euplantulae) and a pre-tarsal "toe" pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were [Formula: see text] 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised "friction pads" that produce traction when pressed against the substrate, while arolia are "true" adhesive pads that stick to the substrate when activated by pulling forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cowpea mosaic virus (CPMV)-based thin films are biologically active for cell culture. Using layer-by-layer assembly of CPMV and poly(diallyldimethylammonium chloride), quantitatively scalable biomolecular surfaces were constructed, which were well characterized using quartz crystal microbalance, UV-vis and atomic force microscopy. The surface coverage of CPMV nanoparticles depended on the adsorption time and pH of the virus solution, with a greater amount of CPMV adsorption occurring near its isoelectric point. It was found that the adhesion and proliferation of NIH-3T3 fibroblasts can be controlled by the coverage of viral particles using this multilayer technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale molecular dynamics simulations have been performed on canonical ensembles to model the adhesion and indentation characteristics of 3-D metallic nano-scale junctions in tip-substrate geometries, and the crack propagation in 2-D metallic lattices. It is shown that irreversible flows in nano-volumes of materials control the behaviour of the 3-D nano-contacts, and that local diffusional flow constitutes the atomistic mechanism underlying these plastic flows. These simulations show that the force of adhesion in metallic nano-contacts is reduced when adsorbate monolayers are present at the metal—metal junctions. Our results are in agreement with the conclusions of very accurate point-contact experiments carried out in this field. Our fracture simulations reveal that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures, the nucleation of dislocations is shown to cause a brittle-to-ductile transition. Limiting crack propagation velocities are computed for different strain rates and a dynamic instability is shown to control the crack movement beyond this limiting velocity, in line with the recent experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new experimental procedure has been implemented and a prototype of a novel adhesion tester has been designed and constructed using rapid prototyping technology. A tumbler mixer has been designed and constructed for coating powder material onto a crisp substrate. In the impact separation experiment, the amount of powder detached from one side of a crisp substrate by the effect of impact forces (48g, 77g, 102g) generated by the tester was measured. Salt particles with different size fractions (63-125, 125-180, and 180-250m) and several flavoring powders have been tested extensively. By plotting the detachment versus impact force, the difference obtained between adhesion strength of different flavoring powders (which is a strong function of particle size and surface oil content of the crisp) has been discussed. The detachment rate of salt particles increased (from 1% to 2%) with particle size (from 63 to 250m) in the presence of oil on the surface of the crisp substrate and decreased rapidly with the increase in the amount of oil applied (from 0 to 1%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The firm adhesion of flavouring particles onto crisp surfaces during coating processes is a major concern in the snack production industry. Detachment of flavouring powders from products during handling and production stages can lead to substantial financial losses for the industry, in terms of variable flavour performance and extended cleaning down time of fugitive particle build-up on process equipment. Understanding the adhesion strength of applied bulk particulates used for flavouring formulations will help analysts to evaluate the efficiency of coating processes and potentially enable them to assess the adhesion strength of newly formulated flavouring powder prior to commitment to full scale plant trials. A rapid prototype of a novel adhesion tester has been designed and constructed. The apparatus operates according to the principle of impact force acting on particles attached to the surface of the food substrate. The main component is a circular plate to which four sample holders are attached and which is subjected to vertical travel down a guide shaft. Several flavouring powders have been tested extensively. By plotting the detachment versus impact force, the difference obtained between adhesion strength of different flavouring powders (which is a strong function of particle size) has been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif de cette étude était d’évaluer et de comparer la force d’adhésion de deux résines de collage: le ClearfilTM Esthetic Cement & DC Bond Kit (C) et le RelyXTM Unicem (R), sur trois adhérents différents : une surface d’émail, un alliage de métaux non précieux (Np) et un alliage de métaux semi-précieux (Sp). La surface des échantillons des alliages métalliques a subi différents traitements de surface. Sur l’émail (n=15) ainsi que sur les plaquettes d’alliages Np et Sp (n=15), des cylindres de résine étaient appliqués et polymérisés. Suite au processus de collage, les échantillons ont été incubés à 37°C pendant 24 heures, puis ont subi 500 cycles de thermocyclage. Des tests de cisaillement ont été effectués, suivi par l’analyse de la surface des échantillons au microscope à balayage électronique. Une comparaison de type T-test et des comparaisons multiples post hoc, ont été effectuées pour l’analyse statistique (p 0,05). Sur l’émail, les résultats ont démontré que la résine C présentait une force d'adhésion moyenne statistiquement supérieure (33,97±17,18 MPa) à la résine R (10,48±11,23 MPa) (p 0,05). Le type d’alliage utilisé n’influençait pas la force d’adhésion, et ce, peu importe le type de résine de collage (p>0,05). Pour le groupe Sp, la résine C a démontré une adhésion statistiquement supérieure à la résine R, et ce, pour tous les traitements de surface (p 0,05). En conclusion, la résine C a démontré des résultats d’adhésion significativement supérieurs à la résine R sur l’émail ainsi que sur presque toutes les surfaces traitées des alliages de métaux.