6 resultados para Adhesion Force

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding friction and adhesion in static and sliding contact of surfaces is important in numerous physical phenomena and technological applications. Most surfaces are rough at the microscale, and thus the real area of contact is only a fraction of the nominal area. The macroscopic frictional and adhesive response is determined by the collective behavior of the population of evolving and interacting microscopic contacts. This collective behavior can be very different from the behavior of individual contacts. It is thus important to understand how the macroscopic response emerges from the microscopic one. In this thesis, we develop a theoretical and computational framework to study the collective behavior. Our philosophy is to assume a simple behavior of a single asperity and study the collective response of an ensemble. Our work bridges the existing well-developed studies of single asperities with phenomenological laws that describe macroscopic rate-and-state behavior of frictional interfaces. We find that many aspects of the macroscopic behavior are robust with respect to the microscopic response. This explains why qualitatively similar frictional features are seen for a diverse range of materials. We first show that the collective response of an ensemble of one-dimensional independent viscoelastic elements interacting through a mean field reproduces many qualitative features of static and sliding friction evolution. The resulting macroscopic behavior is different from the microscopic one: for example, even if each contact is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The framework is then extended to incorporate three-dimensional rough surfaces, long- range elastic interactions between contacts, and time-dependent material behaviors such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dominates and the elastic interactions, though important from a quantitative perspective, do not change the qualitative macroscopic response. Finally, we examine the effect of adhesion on the frictional response as well as develop a force threshold model for adhesion and mode I interfacial cracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forces cells apply to their surroundings control biological processes such as growth, adhesion, development, and migration. In the past 20 years, a number of experimental techniques have been developed to measure such cell tractions. These approaches have primarily measured the tractions applied by cells to synthetic two-dimensional substrates, which do not mimic in vivo conditions for most cell types. Many cell types live in a fibrous three-dimensional (3D) matrix environment. While studying cell behavior in such 3D matrices will provide valuable insights for the mechanobiology and tissue engineering communities, no experimental approaches have yet measured cell tractions in a fibrous 3D matrix.

This thesis describes the development and application of an experimental technique for quantifying cellular forces in a natural 3D matrix. Cells and their surrounding matrix are imaged in three dimensions with high speed confocal microscopy. The cell-induced matrix displacements are computed from the 3D image volumes using digital volume correlation. The strain tensor in the 3D matrix is computed by differentiating the displacements, and the stress tensor is computed by applying a constitutive law. Finally, tractions applied by the cells to the matrix are computed directly from the stress tensor.

The 3D traction measurement approach is used to investigate how cells mechanically interact with the matrix in biologically relevant processes such as division and invasion. During division, a single mother cell undergoes a drastic morphological change to split into two daughter cells. In a 3D matrix, dividing cells apply tensile force to the matrix through thin, persistent extensions that in turn direct the orientation and location of the daughter cells. Cell invasion into a 3D matrix is the first step required for cell migration in three dimensions. During invasion, cells initially apply minimal tractions to the matrix as they extend thin protrusions into the matrix fiber network. The invading cells anchor themselves to the matrix using these protrusions, and subsequently pull on the matrix to propel themselves forward.

Lastly, this thesis describes a constitutive model for the 3D fibrous matrix that uses a finite element (FE) approach. The FE model simulates the fibrous microstructure of the matrix and matches the cell-induced matrix displacements observed experimentally using digital volume correlation. The model is applied to predict how cells mechanically sense one another in a 3D matrix. It is found that cell-induced matrix displacements localize along linear paths. These linear paths propagate over a long range through the fibrous matrix, and provide a mechanism for cell-cell signaling and mechanosensing. The FE model developed here has the potential to reveal the effects of matrix density, inhomogeneity, and anisotropy in signaling cell behavior through mechanotransduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to magnetic resonance was introduced in 1992 based upon detection of spin-induced forces by J. Sidles [1]. This technique, now called magnetic resonance force microscopy (MRFM), was first demonstrated that same year via electron paramagnetic resonance (EPR) by D. Rugar et al. [2]. This new method combines principles of magnetic resonance with those of scanned probe technology to detect spin resonance through mechanical, rather than inductive, means. In this thesis the development and use of ferromagnetic resonance force microscopy (FMRFM) is described. This variant of MRFM, which allows investigation of ferromagnetic samples, was first demonstrated in 1996 by Z. Zhang et al. [3]. FMRFM enables characterization of (a) the dynamic magnetic properties of microscale magnetic devices, and (b) the spatial dependence of ferromagnetic resonance within a sample. Both are impossible with conventional ferromagnetic resonance techniques.

Ferromagnetically coupled systems, however, pose unique challenges for force detection. In this thesis the attainable spatial resolution - and the underlying physical mechanisms that determine it - are established. We analyze the dependence of the magnetostatic modes upon sample dimensions using a series of microscale yttrium iron garnet (YIG) samples. Mapping of mode amplitudes within these sample is attained with an unprecedented spatial resolution of 15μm. The modes, never before analyzed on this scale, fit simple models developed in this thesis for samples of micron dimensions. The application of stronger gradient fields induces localized perturbation of the ferromagnetic resonance modes. The first demonstrations of this effect are presented in this study, and a simple theoretical model is developed to explain our observations. The results indicate that the characteristics of the locally-detected ferromagnetic modes are still largely determined by the external fields and dimensions of the entire sample, rather than by the localized interaction volume (i.e., the locale most strongly affected by the local gradient field). Establishing this is a crucial first step toward understanding FMRFM in the high gradient field limit where the dispersion relations become locally determined. In this high gradient field regime, FMRFM imaging becomes analogous with that of EPR MRFM.

FMRFM has also been employed to characterize magnetic multilayers, similar to those utilized in giant magnetoresistance (GMR) devices, on a lateral scale 40 x 40μm. This is orders of magnitude smaller than possible via conventional methods. Anisotropy energies, thickness, and interface qualities of individual layers have been resolved.

This initial work clearly demonstrates the immense and unique potential that FMRFM offers for characterizing advanced magnetic nanostructures and magnetic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the behavior of granular materials at three length scales. At the smallest length scale, the grain-scale, we study inter-particle forces and "force chains". Inter-particle forces are the natural building blocks of constitutive laws for granular materials. Force chains are a key signature of the heterogeneity of granular systems. Despite their fundamental importance for calibrating grain-scale numerical models and elucidating constitutive laws, inter-particle forces have not been fully quantified in natural granular materials. We present a numerical force inference technique for determining inter-particle forces from experimental data and apply the technique to two-dimensional and three-dimensional systems under quasi-static and dynamic load. These experiments validate the technique and provide insight into the quasi-static and dynamic behavior of granular materials.

At a larger length scale, the mesoscale, we study the emergent frictional behavior of a collection of grains. Properties of granular materials at this intermediate scale are crucial inputs for macro-scale continuum models. We derive friction laws for granular materials at the mesoscale by applying averaging techniques to grain-scale quantities. These laws portray the nature of steady-state frictional strength as a competition between steady-state dilation and grain-scale dissipation rates. The laws also directly link the rate of dilation to the non-steady-state frictional strength.

At the macro-scale, we investigate continuum modeling techniques capable of simulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular materials in a single computational domain. We propose a Smoothed Particle Hydrodynamics (SPH) approach for granular materials with a viscoplastic constitutive law. The constitutive law uses a rate-dependent and dilation-dependent friction law. We provide a theoretical basis for a dilation-dependent friction law using similar analysis to that performed at the mesoscale. We provide several qualitative and quantitative validations of the technique and discuss ongoing work aiming to couple the granular flow with gas and fluid flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this thesis represents an attempt to summarize to date the information collected on the process of high energy heavy ion induced enhanced adhesion. Briefly, the process involves the irradiation of materials covered by thin (≾3μm) films with high energy (E > 200 keV I nucleon) heavy ion beams (such as Fluorine or Chlorine). Enhanced adhesion has been observed on all material combinations tested, including metal on metal, metal on semiconductor, metal on dielectric and dielectric on dielectric systems. In some cases, the enhancement can be quite large, so that a film that could be wiped off a substrate quite easily before irradiation can withstand determined scrubbing afterwards.

Very little is understood yet about this adhesion mechanism, so what is presented are primarily observations about systems studied, and descriptions of the actual preparation and irradiation of samples used. Some discussion is presented about mechanisms that have been considered but rejected.