967 resultados para Activation C-H
Resumo:
Palladium, iridium, and rhodium complexes of 2-methyleneimidazolines have been synthesized by selective phosphine-assisted activation of the 2-methyl C-H bonds in 2-methylimidazolium compounds. Metallacycles of various sizes were obtained in the reaction of phosphine-tethered 2-methylimidazolium compounds and [{M(cod)X}(2)] (M = Rh or Ir cod = 1,5-cyclooctadiene: X = alkoxyl or Cl). representative complexes were characterized by X-ray crystallography. The selectivity for aliphatic C(sp(3))H versus aromatic C(sp(2))H activation could be adjusted by means of the steric bulk of the OR ligand, whereby a bulky, OR group favors activation of the 2-methyl C(sp(3))-H bond. Experimental results confirmed that a methyl C-H activation product (a seven-membered iridacycle) is the kinetic product, while the aryl C-H activation product (a six-membered iridacycle) is the thermodynamic product.
Resumo:
A lutetium bis( alkyl) complex stabilized by a flexible amino phosphine ligand LLu( CH2Si(CH3)(3))(2)(THF) (L = (2,6-C6H3( CH3)(2)) NCH( C6H5) CH2P(C6H5)(2)) was prepared which upon insertion of N, N'-diisopropylcarbodiimide led to C-H activation via metalation of the ligand aryl methyl followed by reduction of the C=N double bond.
Resumo:
Reaction of the half-sandwich rhenium(v) complexes [Re-Cl-4(C(5)Me(5))] or [Re(O)Cl-2(C(5)Me(5))] with H2S in chloroform in the presence of pyridine leads to the chiral dithiolato complex [ReO((S)(SCH2)C(5)Me(4))(C(5)Me(5))] 1.
Resumo:
AIMS/HYPOTHESIS: To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells. METHODS: Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 micromol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+ solution. RESULTS: Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKCbeta antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine. CONCLUSION/INTERPRETATION: These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKCbeta seems to play a role in mediating this effect.
Resumo:
The C-H activation on metal oxides is a fundamental process in chemistry. In this paper, we report a density functional theory study on the process of the C-H activation of CH4 on Pd(111), Pt(111), Ru(0001), Tc(0001), Cu(111), PdO(001), PdO(110), and PdO(100). A linear relationship between the C-H activation barrier and the chemisorption in the dissociation final state on the metal surfaces is obtained, which is consistent with the work in the literature. However, the relationship is poor on the metal oxide surfaces. Instead, a strong linear correlation between the barrier and the lattice O-H bond strength is found on the oxides. The new linear relationship is analyzed and the physical origin is identified. (c) 2008 American Institute of Physics.
Resumo:
Methane activation is a crucial step in the conversion of methane to valuable oxygenated products. In heterogeneous catalysis, however, methane activation often leads to complete dissociation: If a catalyst can activate the first C-H bond in CH4, it can often break the remaining C-H bonds. In this study, using density functional theory, we illustrate that single C-H bond activation in CH4 is possible. We choose a model system which consists of isolated Pt atoms on a MoO3(010) surface. We find that the Pt atoms on this surface can readily activate the first C-H bond in methane. The reaction barrier of only 0.3 eV obtained in this study is significantly lower than that on a Pt(111) surface. We also find, in contrast to the processes on pure metal surfaces, that the further dehydrogenation of methyl (CH3) is very energetically unfavorable on the MoO3-supported Pt catalyst. (C) 2002 American Institute of Physics.
Resumo:
The physical effect of high concentrations of reversibly dissolved SO2 on [C(2)mim][NTf2] was examined using cyclic voltammetry, chronoamperometry, and ESR spectroscopy. Cyclic voltammetry of the oxidation of solutions of ferrocene, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and chloride in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide ([C(2)mim][NTf2]) reveals an increase in limiting current of each species corresponding to the addition of increasing concentrations of sulfur dioxide. Quantitative chronoamperometry reveals an increase in each species' diffusion coefficient with SO2 concentration. When chronoamperometric data were obtained for ferrocene in [C(2)mim][NTf2] at a range of temperatures, the translational diffusion activation energy (29.0 +/- 0.5 kJ mol(-1)) was found to be in good agreement with previous studies. Adding SO2 results in apparent near-activationless translational diffusion. A significant decrease in the activation energy of rotational diffusion with the SO2 saturation of a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) solution in [C(2)mim][NTf2] (29.9 +/- 2.0 to 7.7 +/- 5.3 kJ mol(-1)) was observed using electron spin resonance (ESR) spectroscopy. The reversible physical absorption Of SO2 by [C(2)mim][NTf2] should have no adverse effect on the ability of that ionic liquid to be employed as a solvent in an electrochemical gas sensor, and it is possible that the SO2-mediated reduction of RTIL viscosity could have intrinsic utility.
Resumo:
1 Neuropeptide-induced histamine release is thought to occur via receptor-independent mechanisms, with net charge and lipophilicity being important factors.
Resumo:
Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Near 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or ß-arrestin-dependent signalling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2RG) or recruiting ß-arrestin2 (CCK2Rß) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150,013X), acted as a high affinity competitive antagonist on CCK2RG but was nearly inefficient as inhibitor of CCK2Rß. Several structural elements on both GV150,013X and in CCK2R binding cavity, which hinder binding of GV150,013X only to the CCK2Rß were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulphur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2Rß state. These data establish structural evidences for distinct conformations of a 7TMR associated with ß-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.
Resumo:
Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1-mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c-inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.
Resumo:
The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.