1000 resultados para Acc rate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ever since its discovery, Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) has been considered as one of the "little brothers" of the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) as it displays similar characteristics including abrupt warming, ocean acidification, and biotic shifts. One of the remaining key questions is what effect these lesser climate perturbations had on ocean circulation and ventilation and, ultimately, biotic disruptions. Here we characterize ETM2 sections of the NE Atlantic (Deep Sea Drilling Project Sites 401 and 550) using multispecies benthic foraminiferal stable isotopes, grain size analysis, XRF core scanning, and carbonate content. The magnitude of the carbon isotope excursion (0.85-1.10 per mil) and bottom water warming (2-2.5°C) during ETM2 seems slightly smaller than in South Atlantic records. The comparison of the lateral d13C gradient between the North and South Atlantic reveals that a transient circulation switch took place during ETM2, a similar pattern as observed for the PETM. New grain size and published faunal data support this hypothesis by indicating a reduction in deepwater current velocity. Following ETM2, we record a distinct intensification of bottom water currents influencing Atlantic carbonate accumulation and biotic communities, while a dramatic and persistent clay reduction hints at a weakening of the regional hydrological cycle. Our findings highlight the similarities and differences between the PETM and ETM2. Moreover, the heterogeneity of hyperthermal expression emphasizes the need to specifically characterize each hyperthermal event and its background conditions to minimalize artifacts in global climate and carbonate burial models for the early Paleogene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice-rafted debris mass accumulation rates (IRD MAR) at a drill site on the Antarctic continental margin are investigated to evaluate the linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures in the early to mid-Pliocene. ODP Site 1165 is within 400 km of the Antarctic coastline and in the direct pathway of icebergs released by the Amery Ice Shelf. The Amery Ice Shelf is the largest ice shelf in East Antarctica and it buttresses the Lambert Glacier drainage system, which accounts for 14% of the outflow from the East Antarctic Ice Sheet. IRD MAR were low during peak Southern Ocean warming in the early Pliocene. After a brief precursor, a tenfold increase in IRD MAR at 3.3 Ma marks the termination of the early Pliocene ice sheet minimum, coincident with the M2 glacial. For the mid-Pliocene, a strong correlation exists between the high-amplitude signal in the LR04 benthic stack and IRD MAR, suggesting linkages between East Antarctic ice extent, global ice volume and deep-water temperatures. The IRD record at Site 1165 provides evidence of greater sensitivity of the Lambert Glacier-Amery Ice Shelf system to Southern Ocean warming than is currently predicted by ice sheet models, which may relate to uncertainties in the understanding of ocean heat uptake, poleward heat transport and ice sheet-ocean interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accumulation rates for the five sites drilled during Leg 74 of the Glomar Challenger are presented on a common timescale based on calibration of datum levels to paleomagnetic records in Leg 74 sediments for the Paleogene, and a new compilation by Berggren et al. (1985), for the Neogene, and using the seafloor-spreading magnetic anomaly timescale of Kent (1985). We present data on accumulation of total sediment, of foraminifers, of the noncarbonate portion, and of fish teeth that give a history of productivity, winnowing, carbonate dissolution, and nonbiogenic input to what was then a part of the South Atlantic at about 30 deg S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Site 572, located at 1°N, 114° W (3903 m water depth), we recovered a continuous hydraulic piston cored section of upper Miocene to upper Pleistocene pelagic sediments. The sediment is composed of biogenic carbonate and silica with nonbiogenic material as a minor component. Detailed analysis of the calcium carbonate content shows that the degree of variability in carbonate deposition apparently changed markedly between the late Miocene and Pliocene at this equatorial Pacific site. During this interval carbonate mass accumulation rates decreased from 2.6 to 0.8 g/cm**2 per 10**3 yr. If we assume that variations in CaCO3 content reflect changes in the degree of dissolution, then the detailed carbonate analysis would suggest that the degree of variability in carbonate deposition decreases by a factor of 5 as the dominant wavelength of variations increases significantly. However, if the variability in carbonate concentration is described in terms of changes in mean mass accumulation, calculations then suggest that relatively small changes in noncarbonate rates may be important in controlling the observed carbonate records. In addition, the analysis suggests that the degree of variability observed in pelagic carbonate data may in part reflect total accumulation rates. Intervals with high sedimentation rates show lower amplitude variations in concentration than intervals with lower sedimentation rates for the same degree of change in the carbonate accumulation rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Southern Ocean sediments reveal a spike in authigenic uranium 127,000 years ago, within the last interglacial, reflecting decreased oxygenation of deep water by Antarctic Bottom Water (AABW). Unlike ice age reductions in AABW, the interglacial stagnation event appears decoupled from open ocean conditions and may have resulted from coastal freshening due to mass loss from the Antarctic ice sheet. AABW reduction coincided with increased North Atlantic Deep Water (NADW) formation, and the subsequent reinvigoration in AABW coincided with reduced NADW formation. Thus, alternation of deep water formation between the Antarctic and the North Atlantic, believed to characterize ice ages, apparently also occurs in warm climates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the primary objectives of Leg 120 was to obtain a high-resolution Neogene stratigraphic section from the Kerguelen Plateau. Site 751, located in the central part of the Raggatt Basin on the Southern Kerguelen Plateau in 1633.8 m of water (57°43.56'S; 79°48.89'E), was selected as the dedicated Neogene site for this objective. High-resolution sampling at Site 751 was used to delineate in detail the Neogene ice-rafted debris (IRD) occurrences on the Kerguelen Plateau. The oldest IRD found at Site 751 was approximately 9.9 Ma, and it was not until approximately 8.5 Ma that significant concentrations of IRD were detected. The first major IRD event at this site occurred in the uppermost Miocene between 6.0 and 5.5 Ma. During this time period, a general climatic cooling and glacial expansion occurred on Antarctica. The late Miocene IRD event was followed by a continuous episode of elevated IRD deposition in the lowermost Pliocene between 4.5 and 4.1 Ma. The 0.4-m.y. duration and the timing of the early Pliocene IRD event on the Kerguelen Plateau corresponds with IRD fluxes observed on the Falkland Plateau and in the Weddell Abyssal Plain. This correspondence of data indicates that a major global climatic event occurred during the early Pliocene. The East Antarctic Ice Sheet may have experienced deglaciation between 4.5 and 4.1 Ma and, as a result, released large volumes of sediment-laden ice into the Southern Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planktonic foraminiferal assemblages from the upper Pleistocene part of Hole 1087A (0 to 12.1 meters below seafloor) are investigated to assess the role of global and local climate changes on surface circulation in the southern Benguela region. The benthic stable isotope record indicates that the studied interval is representative of the last four climatic cycles, that is, down to marine isotope Stage (MIS) 12. The species assemblages bear a clear transitional to subpolar character, with Neogloboquadrina pachyderma (d), Globorotalia inflata, and Globigerina bulloides, in order of decreasing abundance, as the dominant taxa. This species association presently characterizes the mixing domain of old upwelled and open ocean waters, seaward of the Benguela upwelling cells. Abundance variation of the dominant foraminiferal species roughly follows a glacial-interglacial pattern down to MIS 8, suggesting an alternation of upwelling strength and associated seaward extension of the belt of upwelled water as a response to global climate changes. This pattern is interrupted from ~250 ka down to MIS 12, where the phase relationship with global climate is ill defined and might be interpreted as a local response of the southern Benguela region to the mid-Brunhes event. Of particular interest is a single pulse of newly upwelled waters at the location of Site 1087 during early MIS 9 as indicated by a peak abundance of sinistral N. pachyderma (s). Variable input of warm, salty Indian Ocean thermocline waters into the southeast Atlantic, a key component of the Atlantic heat conveyor, is indicated by abundance changes of the tropical taxon Globorotalia menardii. From this tracer, we suggest that interocean exchange was hardly interrupted throughout the last 460 k.y., but was most effective at glacial terminations, particularly during Terminations I and II, as well as during the upper part of MIS 12. This maximum input of Indian Ocean waters around the southern tip of Africa is associated with the reseeding of G. menardii in the tropical Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The observation by Heinrich (1988) that, during the last glacial period, much of the input of ice-rafted detritus to the North Atlantic sediments may have occurred as a succession of catastrophic events, rekindled interest on the history of the northern ice sheets over the last glacial period. In this paper, we present a rapid method to study the distribution of these events (both in space and time) using whole core low-field magnetic susceptibility. We report on approximately 20 cores covering the last 150 to 250 kyr. Well-defined patterns of ice-rafted detritus appear during periods of large continental ice-sheet extent, although these are not always associated within their maxima. Most of the events may be traced across the North Atlantic Ocean. For the six most recent Heinrich layers (HL), two distinct patterns exist: HL1, HL2, HL4, HL5 are distributed along the northern boundary of the Glacial Polar Front, over most of the North Atlantic between ~40° and 50°N; HL3 is more restricted to the central and eastern part of the northern Atlantic. The Nd-Sr isotopic composition of the material constituting different Heinrich events indicates the different provenance of the two patterns: HL3 has a typical Scandinavia-Arctic-Icelandic 'young crust' signature, and the others have a large component of northern Quebec and northern West Greenland 'old crust' material. These isotopic results, obtained on core SU-9008 from the North American basin, are in agreement with the study by Jantschik and Huon (1992), who used K-Ar dating of silt- and clay-size fractions of an eastern basin core (ME-68-89). These data confirm the large spatial scale of these events, and the enormous amount of ice-rafted detritus they represent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples from the upper portion of a cyclic pelagic carbonate sediment sequence in Deep-Sea Drilling Project (DSDP) hole 503B (4.0°N, 95.6°W) are the first group to be analyzed for paleoceanographic and paleoclimatic proxy-indicators of ice volume, deep ocean and surface water circulation, and atmospheric circulation in order to resolve the complex origin of the cyclicity. Temporal resolution is taken from the delta18O time scale, most other parameters are calculated in terms of their mass flux to the seafloor. CaCO3 percent in the sediments fluctuates in the well-known Pacific pattern and is higher during glacial times. The fluxes of opal and organic carbon have patterns similar to each other and show a variability of a factor of 2.5 to 4. The longer organic carbon record shows flux maxima during both glacial and interglacial times. The accumulation patterns of both opal and organic carbon suggest that the variability in surface water productivity and/or seafloor preservation of those materials is not simply correlated to glacial or interglacial periods. Eolian dust fluxes are greater during interglacial periods by factors of 2 to 5, indicating that eolian source regions in central and northern South America were more arid during interglacial periods. The record of eolian grain size provides a semiquantitative estimation of the intensity of the transporting winds. The eolian data suggest more intense atmospheric circulation during interglacial periods, opposite to the anticipated results. We interpret this observation as recording the southerly shift of the intertropical convergence zone to the latitude of hole 503B during glaciations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 159, four sites (Sites 959-962) were drilled along a depth transect on the Côte d'Ivoire/Ghana Transform Margin. In this study, the Pliocene-Pleistocene history of carbonate and organic carbon accumulation at Hole 959C is reconstructed for the eastern equatorial Atlantic off the Ivory Coast/Ghana based on bulk carbonate, sand fraction, organic carbon, and other organic geochemical records (d13Corg, marine organic matter percentages derived from organic petrology, hydrogen index, C/N). Pliocene-Pleistocene sedimentation off the Ivory Coast/Ghana was strongly affected by low mean sedimentation rates, which are attributed to persistently enhanced bottom-water velocities related to the steep topography of the transform margin. Sand fraction and bulk carbonate records reveal typical glacial/interglacial cycles, preserved, however, with low time resolution. Intermediate carbonate accumulation rates observed throughout the Pliocene-Pleistocene suggest intense winnowing and sediment redistribution superimposed by terrigenous dilution. 'Atlantic-type' sand and carbonate cycles, consistent with records from pelagic areas of the eastern equatorial Atlantic, are encountered at Hole 959C prior to about 0.9 Ma. Total organic carbon (TOC) records are frequently inversely correlated to carbonate contents, indicating mainly productivity-driven carbonate dissolution related to changes in paleoproductivity. During Stages 22-24, 20, 16, 12, 8, and 4, sand and carbonate records reveal a 'Pacific-type' pattern, showing elevated contents during glacials commonly in conjunction with enhanced TOC records. Formation of 'Pacific-type' patterns off the Ivory Coast/Ghana is attributed to drastically increased bottom-water intensities along the transform margin in accordance with results reported from the Walvis Ridge area. Short-term glacial/interglacial changes in paleoproductivity off the Ivory Coast/Ghana are to some extend recognizable during glacials prior to 1.7 Ma and interglacial Stages 21, 19, 13, 9, and 1. Enhanced coastal upwelling during interglacials is attributed to local paleoclimatic and oceanographic conditions off the Ivory Coast/Ghana. Quantitative estimates of marine organic carbon based on organic petrologic and d13Corg records reveal an offset in concentration ranging from 15% to 60%. Highest variabilities of both records are recorded since ~0.9 Ma. Discrepancies between the isotopic and microscopic records are attributed to an admixture of C4 plant debris approaching the eastern equatorial Atlantic via atmospheric dust. Terrestrial organic material likely originated from the grass-savannah-covered Sahel zone in central Africa. Estimated C4 plant concentrations and accumulation rates range from 10% to 37% and from almost zero to 0.006 g/cm**2/k.y., respectively. The strongest eolian supply to the northern Gulf of Guinea is indicated between 1.9 and 1.68 Ma and during glacial isotopic Stages 22-24, 20, 14, and 12. The presence of grass-type plant debris is further supported by organic petrologic studies, which reveal well-preserved cell tissues of vascular plants or tube-shaped, elongated terrestrial macerals showing different levels of oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic geochemical records of the last 940 kyr are presented for equatorial Atlantic Ocean Drilling Program (ODP) sites 663 and 664 and discussed with regard to the development of ocean productivity and African paleoclimate. Proportions of marine and terrigenous organic matter (OM) are estimated from elemental, pyrolytic, isotopic, and petrologic data. Spectral analyses reveal a strong power at the eccentricity and obliquity band, indicating a close response of tropical organic sedimentation to the climatic evolution at high latitudes. The orbital covariance of organic carbon with biogenous opal and terrigenous records favor that glacially enhanced dust supply and surface water mixing were primary controls for deposition of organic carbon. Wind-borne supply of terrigenous OM contributes 26 to 55% and 0 to 39% to the bulk OM based on microscopic and isotopic records, respectively. Admixture of C4 plant matter was approximated to contribute up to 16% to the bulk organic fraction during peak glacial conditions.