924 resultados para AQUEOUS SULFURIC-ACID
Resumo:
The reaction of post-consumer poly(ethylene terephthalate) with aqueous solutions of sulfuric acid 7.5M was investigated in terms of temperature, time and particle size. The reaction extent reached 80% in four days at 100 degrees C and 90% in 5 hours at 135 degrees C. TPA obtained was purified and considered in the same level of quality of the commercial one after tests of elemental analysis, particle size and color. It was concluded that the hydrolysis occurred preferentially at the chain ends and superficially, having as controller mechanism the acid diffusion into the polymer structure. The shrinking-core model can explain the reaction kinetics.
Small-angle X-ray scattering study of the smart thermo-optical behavior of zirconyl aqueous colloids
Resumo:
The smart thermo-optical systems studied here are based on the unusual thermoreversible sol-gel transition of zirconyl chloride aqueous solution modified by sulfuric acid in the molar ratio Zr/SO4:3/1. The transparency to the visible light changes during heating due to light scattering. This feature is related to the aggregates growth that occurs during gelation. These reversible changes can be controlled by the amount of chloride ions in solution. The thermoreversible sol-gel transition temperature increases from 323 to 343 K by decreasing the molar ratio Cl/Zr from 7.0 to 1.3. In this work the effect of the concentration of chloride ions on the structural characteristics of the system has been analyzed by in situ SAXS measurements during the sol-gel transition carried out at 323 and 333 K. The experimental SAXS curves of sols exhibit three regions at small, medium and high scattering vectors characteristics of Guinier, fractal and Porod regimes, respectively. The radius of primary particles, obtained from the crossover between the fractal and Porod regimes, remains almost invariable with the chloride concentration, and the value (4 Angstrom) is consistent with the size of the molecular precursor. During the sol-gel transition the aggregates grow with a fractal structure and the fractal dimensionality decreases from 2.4 to 1.8. This last value is characteristic of a cluster-cluster aggregation controlled by a diffusion process. Furthermore, the time exponent of aggregate growth presents values of 0.33 and 1, typical of diffusional and hydrodynamic motions. A crossover between these two regimes is observed.
Resumo:
Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32 ± 0.89 dL g-1, 274.80 ± 1.94 dL g-1 and 416.49 ± 2.21 dL g-1 illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r > 0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications.
Resumo:
The reaction of post-consumer poly(ethylene terephthalate) with aqueous solutions of sulfuric acid 7.5M was investigated in terms of temperature, time and particle size. The reaction extent reached 80% in four days at 100 degrees C and 90% in 5 hours at 135 degrees C. TPA obtained was purified and considered in the same level of quality of the commercial one after tests of elemental analysis, particle size and color. It was concluded that the hydrolysis occurred preferentially at the chain ends and superficially, having as controller mechanism the acid diffusion into the polymer structure. The shrinking-core model can explain the reaction kinetics.
Resumo:
Methanesulfonic acid (MSA) was compared with sulfuric acid for the conversion of glucose and xylose mixtures to produce levulinic acid and furfural. The interactions of glucose and xylose, the predominant sugars found in biomass, were found to influence product yields with furfural degradation reactions enhanced under higher reactant loadings. Fast heating rates allowed maximal yields (>60 mol%) of levulinic acid and furfural to be achieved under short reaction times. Under the range of conditions examined, sulfuric acid produced a slight increase in levulinic acid yield by 6% (P = 0.02), although there was no significant difference (P = 0.11) between MSA and sulfuric acid in levulinic acid formed from glucose alone. The amount and type of the solid residue is similar between MSA and sulfuric acid. As such, MSA is a suitable alternative because its use minimizes corrosion and disposal issues associated with mineral acid catalysts. The heating value of the residue was 22 MJ/kg implying that it is a suitable source of fuel. On the basis of these results, a two-stage processing strategy is proposed to target high levulinic acid and furfural yields, and other chemical products (e.g., lactic acid, xylitol, acetic acid and formic acid). This will result in full utilization of bagasse components.
Resumo:
The Al-pillared clay catalyst obtained by exposing activated clay powder to sulfuric acid and aluminium salts and calcining in air at 373-673 K, was found to be highly active for the title reaction. The results indicated that pillared layer clay of the mixed oxide has been employed as parent catalysts for their definite structure and special properties which can be modified by the substitution of L and B acid sites cations. Solid acid catalyst of Supported aluminium was found to be highly active and selective at the 373-473 K temperature range for heterogeneous esterification. The activity is mainly attributed to the Lewis (and a considerably small number of Bronsted) acid sites whose number and strength increased due to pillaring. The water produced in the esterification can be induced by Al3+, which makes the catalyst surface to form strong B acid. Their acidities are obtained by pH measurement. If only B acid sites are > 70%, and pH < 1 in the 2-ethoxyethanol, there exists an activity of esterification. The used catalyst gave identical results with that of the fresh one. X-ray diffraction spectra show that the composition and active phase of the used catalysts are the same as the fresh ones. The kinetic study of the reaction was carried out by an integral method of analysis. The kinetic equation of surface esterification is y = 2.36x - 0.98.
Resumo:
A new approach for the synthesis of polyaniline nanofibers under pseudo-high dilute conditions in aqueous system has been developed. High yield nanoscale polyaniline fibers with 18-110 nm in diameter are readily prepared by a high aniline concentration 0.4 M oxidation polymerization using ammonium persulfate (APS) as an oxidant in the presence of hydrochloric acid (HCl), perchloric acid (HClO4), (1S)-(+)-10-camphorsulfonic acid (CSA), acidic phosphate PAEG120 (PA120) and sulfuric acid (H2SO4) as the dopants. The novel pathway always produces polyaniline nanofibers of tunable diameters, high conductivity (from 10(0) to 10(1) S/cm) and crystallinity.
Resumo:
The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.
Resumo:
In this paper, the extraction of Ce(IV) from nitric acid solutions is investigated using di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) in heptane as extractant. Ce(IV) can be extracted effectively from nitric acid solution, whereas it is poorly extracted from sulfuric acid solution. Compared with some other organophosphorus esters, DEHEHP has moderate extractablity for Ce(IV). The extraction efficiency varies with diluent in the order: aliphatic hydrocarbons > nitrobenzene > aromatic hydrocarbons > carbon tetrachloride > chloroform. Regeneration and loading capacities of DEHEHP have also been examined. Ce(IV) extraction in HNO3 solutions as well as extraction of HNO3 and H2O have been systematically studied. The Ce(IV) extraction increases with an increasing of HNO3 concentration and exhibits the maximum distribution ratio at 1-1.5 mol/L HNO3. Nitric acid, as a source of nitrate ion, enhances the extraction of metal ion. But it also competes with metal ions for extractant molecules by its own extraction under high acidities. The proposed extraction process is described by the following equilibrium equations
Resumo:
The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.
Resumo:
Extraction and separation of Eu3+ and Zn2+ in sulfuric acid solution was investigated by hollow fiber membrane with cyanex 302 (bis (2,4,4-trimethylpentyl) monothiophosphinic acid) in counter-currently circulating operation. Reaction mechanism of membrane extraction and effect of extractant concentration and H+ concentration in aqueous phase on the mass transfer coefficient were discussed. It can be concluded that Zn2+ can be extracted completely from Eu3+ sulfate solution according to the kinetics competing difference. In one extractor process, extraction percentage of Zn2+ was not completely and Eu3+ was not extracted. Extraction percentage of Zn2+ reached 94.92%, but Eu3+ only reached 8.59% after 100 minutes extraction in two series connectors and that of Zn2+ and Eu3+ reached 99.9% and 6.53% respectively after 40 minutes extraction in three series connectors.
Resumo:
Heteropolyacids (HPAs) possess both acidic and redox catalytic properties and held extensive promise of practical application. These type of compound display a great potential of specific synthesis reactions for replacing sulfuric acid to satisfy the requirements of environmental protection. Heterogenizing HPAs would not only make them more useful in liquid phase oxidation with oxygen and in acid-catalyzed reaction, as the catalyst is often difficult to separate from the reaction products, but also create favorable factors for realizing heterogenization of homogeneous reaction and even utilizing new technology of catalytic distillation. In this paper, different kinds of porous materials which are well characterized, including oxides such as Al2O3, SiO2, TiO2, diatomite, bentonite, and active carbon of different sources, were used as support for heterogenizing HPAs (in different media), and the obtained results, the intrinsic characters of supports which may influence both the nature of the interaction between HPAs and supports in the heterogenization and the activity in the catalytic reaction, are explored. It is expected that these can provide a referential model for preparing supported acid catalyst used in liquid phase.
Resumo:
Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.
Resumo:
Different one-dimensional nanostructured polyanilines were synthesized in sulfuric acid solutions by conventional polymerization, interfacial polymerization and direct mixed reaction, respectively. The products were characterized with SEM, UV-vis and FTIR and the anticorrosion performance of products on mild steel were studied using electrochemical measurement in 3.5% NaCl aqueous solution. Results showed that the polyaniline nanofibers synthesized by direct mixed reaction have uniform morphology with diameters of 60-100 nm and more excellent protective properties than conventional aggregated polyaniline. Comparative studies revealed that the nanostructure and morphology of polyaniline could influence its anticorrosion performance. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This thesis describes a broad range of experiments based on an aerosol flow-tube system to probe the interactions between atmospherically relevant aerosols with trace gases. This apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements respectively as a function of relative humidity and aerosol chemical composition. Heterogeneous reactions between various ratios of ammonia gas and acidic aerosols were studied in aerosol form as opposed to bulk solutions. The apparatus is unique, in that it employed two aerosol generation methods to follow the size evolution of the aerosol while allowing detailed spectroscopic investigation of its chemical content. A novel chemiluminescence apparatus was also used to measure [NH4+]. SO2.H2O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid. This complex was produced within gaseous, aqueous and aerosol SO2 systems. The addition of ammonia, gave mainly hydrogen sulfite tautomers and disulfite ions. These species were prevalent at high humidities enhancing the aqueous nature of sulfur (IV) species. Their weak acidity is evident due to the low [NH4+] produced. An increasing recognition that dicarboxylic acids may contribute significantly to the total acid burden in polluted urban environments is evident in the literature. It was observed that speciation within the oxalic, malonic and succinic systems shifted towards the most ionised form as the relative humidity was increased due to complete protonisation. The addition of ammonia produced ammonium dicarboxylate ions. Less reaction for ammonia with the malonic and succinic species were observed in comparison to the oxalic acid system. This observation coincides with the decrease in acidity of these organic species. The interaction between dicarboxylic acids and ‘sulfurous’/sulfuric acid has not been previously investigated. Therefore the results presented here are original to the field of tropospheric chemistry. SHO3-; S2O52-; HSO4-; SO42- and H1,3,5C2,3,4O4-;C2,3,4O4 2- were the main components found in the complex inorganic-organic systems investigated here. The introduction of ammonia produced ammonium dicarboxylate as well as ammonium disulfite/sulfate ions and increasing the acid concentrations increased the total amount of [NH4+].