963 resultados para ACCUPYC 1330 analyser
Resumo:
Mode of access: Internet.
Resumo:
"June 1965."
Resumo:
"June 1971."
Water vapour isotopes analyser raw data from POLARSTERN cruise PS93.2 (ARK-XXIX/2.2), links to files
Resumo:
Gelatinisation and retrogradation of starch-whey mixtures were studied in water (pH 7) using the Rapid Visco-Analyser (RVA). The starch:whey ratios ranged from 0:100 - 100:0. Wheat starch, and whey protein concentrate (about 80% solids basis) and isolate (about 96% solids basis) were used. Mixtures with whey isolates were generally more viscous than those with whey concentrates, and this was attributed to fewer non-protein milk components in the former. Whey protein concentrates and isolates reduced the peak, trough and final viscosities of the mixtures, but the breakdown and setback ratios of the mixtures were increased. The gelatinisation temperature increased with whey substitutions indicating that whey protein delayed starch gelatinisation. The temperature of fastest viscosity development decreased as the amount of whey was increased. Whey protein isolate generally exercised a lesser effect than the concentrate. At between 40 - 50% whey substitutions, the dominant phase changed from starch to protein irrespective of the source of the whey protein. An additive law poorly defined selected RVA parameters. Both macromolecules interacted to define the viscosity of the mixture, and an exponential model predicted the viscosity better than the additive law. The results obtained in this study are discussed to assist the understanding of extrusion processing of starch-whey systems as models for whey-fortified snack and ready-to-eat foods. Copyright ©2006 The Berkeley Electronic Press. All rights reserved.
Resumo:
Aim: The aim of this study was to evaluate the practicality and accuracy of tonometers used in routine clinical practice for established keratoconus (KC). Methods: This was a prospective study of 118 normal and 76 keratoconic eyes where intraocular pressure (IOP) was measured in random order using the Goldman applanation tonometer (GAT), Pascal dynamic contour tonometer (DCT), Reichert ocular response analyser (ORA) and TonoPen XL tonometer. Corneal hysteresis (CH) and corneal resistance factor (CRF), as calculated by the ORA, were recorded. Central corneal thickness (CCT) was measured using an ultrasound pachymeter. Results: The difference in IOP values between instruments was highly significant in both study groups (p<0.001). All other IOP measures were significantly higher than those for GAT, except for the Goldmann-correlated IOP (average of the two applanation pressure points) (IOPg) as measured by ORA in the control group and the CH-corrected IOP (corneal-compensated IOP value) (IOPcc) measures in the KC group. CCT, CH and CRF were significantly less in the KC group (p<0.001). Apart from the DCT, all techniques tended to measure IOP higher in eyes with thicker corneas. Conclusion: The DCT and the ORA are currently the most appropriate tonometers to use in KC for the measurement of IOPcc. Corneal factors such as CH and CRT may be of more importance than CCT in causing inaccuracies in applanation tonometry techniques.