958 resultados para A* search algorithm


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com a evolução da tecnologia, os UAVs (unmanned aerial vehicles) são cada vez mais utilizados, não só em missões de risco para o ser Humano, mas também noutro tipo de missões, como é o caso de missões de inspeção, vigilância, busca e salvamento. Isto devese ao baixo custo das plataformas assim como à sua enorme fiabilidade e facilidade de operação. Esta dissertação surge da necessidade de aumentar a autonomia dos UAVs do projeto PITVANT (Projeto de Investigação e Tecnologia em Veículos Aéreos Não Tripulados), projeto de investigação colaborativa entre a AFA (Academia da Força Aérea) e a FEUP (Faculdade de Engenharia da Universidade do Porto), relativamente ao planeamento de trajetórias entre dois pontos no espaço, evitando os obstáculos que intersetem o caminho. Para executar o planeamento da trajetória mais curta entre dois pontos, foi implementado o algoritmo de pesquisa A*, por ser um algoritmo de pesquisa de soluções ótimas. A área de pesquisa é decomposta em células regulares e o centro das células são os nós de pesquisa do A*. O tamanho de cada célula é dependente da dinâmica de cada aeronave. Para que as aeronaves não colidam com os obstáculos, foi desenvolvido um método numérico baseado em relações trigonométricas para criar uma margem de segurança em torno de cada obstáculo. Estas margens de segurança são configuráveis, sendo o seu valor por defeito igual ao raio mínimo de curvatura da aeronave à velocidade de cruzeiro. De forma a avaliar a sua escalabilidade, o algoritmo foi avaliado com diferentes números de obstáculos. As métricas utilizadas para avaliação do algoritmo foram o tempo de computação do mesmo e o comprimento do trajeto obtido. Foi ainda comparado o desempenho do algoritmo desenvolvido com um algoritmo já implementado, do tipo fast marching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Single Nucleotide Polymorphisms, among other type of sequence variants, constitute key elements in genetic epidemiology and pharmacogenomics. While sequence data about genetic variation is found at databases such as dbSNP, clues about the functional and phenotypic consequences of the variations are generally found in biomedical literature. The identification of the relevant documents and the extraction of the information from them are hampered by the large size of literature databases and the lack of widely accepted standard notation for biomedical entities. Thus, automatic systems for the identification of citations of allelic variants of genes in biomedical texts are required. Results: Our group has previously reported the development of OSIRIS, a system aimed at the retrieval of literature about allelic variants of genes http://ibi.imim.es/osirisform.html. Here we describe the development of a new version of OSIRIS (OSIRISv1.2, http://ibi.imim.es/OSIRISv1.2.html webcite) which incorporates a new entity recognition module and is built on top of a local mirror of the MEDLINE collection and HgenetInfoDB: a database that collects data on human gene sequence variations. The new entity recognition module is based on a pattern-based search algorithm for the identification of variation terms in the texts and their mapping to dbSNP identifiers. The performance of OSIRISv1.2 was evaluated on a manually annotated corpus, resulting in 99% precision, 82% recall, and an F-score of 0.89. As an example, the application of the system for collecting literature citations for the allelic variants of genes related to the diseases intracranial aneurysm and breast cancer is presented. Conclusion: OSIRISv1.2 can be used to link literature references to dbSNP database entries with high accuracy, and therefore is suitable for collecting current knowledge on gene sequence variations and supporting the functional annotation of variation databases. The application of OSIRISv1.2 in combination with controlled vocabularies like MeSH provides a way to identify associations of biomedical interest, such as those that relate SNPs with diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of a large and reliable DNA codeword library is a key problem in DNA based computing. DNA codes, namely sets of fixed length edit metric codewords over the alphabet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and chemical restrictions of DNA strands. The primary constraints that we consider are the reverse--complement constraint and the fixed GC--content constraint, as well as the basic edit distance constraint between codewords. We focus on exploring the theory underlying DNA codes and discuss several approaches to searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive search algorithm to produce provably optimal DNA codes for codes with small parameter values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes with relatively large parameter values, where we can consider their sizes as reasonable lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA codes with length from 1 to 9 and minimum distance from 1 to 9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse étudie une approche intégrant la gestion de lâhoraire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail sâarticule autour dâune structure à deux niveaux de consolidation où lâaffectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que lâhoraire dâexploitation sont étudiés simultanément. La résolution de ce problème permet dâidentifier un plan dâexploitation rentable comprenant les politiques de blocage, le routage et lâhoraire des trains, de même que lâhabillage ainsi que lâaffectation du traffic. Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services. Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie r sâavère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi quâun modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin dâobtenir de bonnes solutions en des temps de calcul raisonnables. Premièrement, un cas particulier avec services directs est analysé. En considérant une cara ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel. Un algorithme basé sur lâajustement de pente est développé pour le modèle complet, et nous proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant dâaméliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par lâalgorithme dâajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à lâaide dâun logiciel commercial. Lâheuristique tire donc avantage de la vitesse de convergence de lâalgorithme dâajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent lâefficacité de lâheuristique proposée. En outre, lâalgorithme représente une alternative intéressante afin de résoudre le problème simplifié. Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de lâalgorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure dâajustement de pente où, par rapport à lâancienne, seule lâapproximation des couts liés aux services est considérée. La nouvelle approche dâajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que lâalgorithme est en mesure dâidentifier des solutions de qualité dans un contexte visant la résolution dâinstances réelles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).