1000 resultados para 613.488
Resumo:
Ninety-three samples from DSDP Leg 95, Sites 612 and 613, were examined for ostracodes to aid in the study of paleoceanography and paleodepth. In total, more than 25 genera were recovered. The most abundant and diverse ostracode assemblages were from the middle Eocene at both sites; lower and upper Eocene and Pliocene-Pleistocene assemblages were less abundant and were dominated by only three or four species. The middle Eocene assemblages were the most diagnostic of paleoenvironment and suggest water depths of 1000 to 2000 m. These assemblages are similar to other middle Eocene assemblages known from the Caribbean and North Atlantic, and signify a relatively cosmopolitan fauna that inhabited moderately deep but relatively warm bottom waters.
Resumo:
Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.
Resumo:
The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
Resumo:
Phycobiliproteins are a family of water-soluble pigment proteins that play an important role as accessory or antenna pigments and absorb in the green part of the light spectrum poorly used by chlorophyll a. The phycoerythrins (PEs) are one of four types of phycobiliproteins that are generally distinguished based on their absorption properties. As PEs are water soluble, they are generally not captured with conventional pigment analysis. Here we present a statistical model based on in situ measurements of three transatlantic cruises which allows us to derive relative PE concentration from standardized hyperspectral underwater radiance measurements (Lu). The model relies on Empirical Orthogonal Function (EOF) analysis of Lu spectra and, subsequently, a Generalized Linear Model with measured PE concentrations as the response variable and EOF loadings as predictor variables. The method is used to predict relative PE concentrations throughout the water column and to calculate integrated PE estimates based on those profiles.
Resumo:
Here we present results of the first comprehensive study of sulphur compounds and methane in the oligotrophic tropical West Pacific Ocean. The concentrations of dimethylsuphide (DMS), dimethylsulphoniopropionate (DMSP), dimethylsulphoxide (DMSO), and methane (CH4), as well as various phytoplankton marker pigments in the surface ocean were measured along a north-south transit from Japan to Australia in October 2009. DMS (0.9 nmol/l), dissolved DMSP (DMSPd, 1.6 nmol/l) and particulate DMSP (DMSPp, 2 nmol/l) concentrations were generally low, while dissolved DMSO (DMSOd, 4.4 nmol/l) and particulate DMSO (DMSOp, 11.5 nmol/l) concentrations were comparably enhanced. Positive correlations were found between DMSO and DMSP as well as DMSP and DMSO with chlorophyll a, which suggests a similar source for both compounds. Similar phytoplankton groups were identified as being important for the DMSO and DMSP pool, thus, the same algae taxa might produce both DMSP and DMSO. In contrast, phytoplankton seemed to play only a minor role for the DMS distribution in the western Pacific Ocean. The observed DMSPp : DMSOp ratios were very low and seem to be characteristic of oligotrophic tropical waters representing the extreme endpoint of the global DMSPp : DMSOp ratio vs. SST relationship. It is most likely that nutrient limitation and oxidative stress in the tropical West Pacific Ocean triggered enhanced DMSO production leading to an accumulation of DMSO in the sea surface. Positive correlations between DMSPd and CH4, as well as between DMSO (particulate and total) and CH4, were found along the transit. We conclude that both DMSP and DMSO serve as substrates for methanogenic bacteria in the western Pacific Ocean.