985 resultados para 6-Degrees of freedom inertia coupled aerial vehicles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel dc-dc converter topology to achieve an ultrahigh step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional dc-dc converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W dc-dc converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and dc power transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. ^ The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Bachelor Thesis I want to provide readers with tools and scripts for the control of a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in order to better contextualize the work done. In practice, we will see most common software, and developing environments, used to cope with our task: these include ROS, along with visual simulation by VREP and RVIZ, and an almost "stand-alone" ROS extension called MoveIt!, a very complete programming interface for trajectory planning and obstacle avoidance. As we will better appreciate and understand in the introduction chapter, the capability of detecting collision objects through a camera sensor, and re-plan to the desired end-effector pose, are not enough. In fact, this work is implemented in a more complex system, where recognition of particular objects is needed. Through a package of ROS and customized scripts, a detailed procedure will be provided on how to distinguish a particular object, retrieve its reference frame with respect to a known one, and then allow navigation to that target. Together with technical details, the aim is also to report working scripts and a specific appendix (A) you can refer to, if desiring to put things together.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a multi-surface sliding control (MSSC) is proposed for trajectory tracking of 6 degrees of freedom (6-DOF) inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an iterative MSSC design can be carried out to control flight. Using MSSC on MIMO autonomous flight systems creates confluent control that can account for model mismatches, system uncertainties, system disturbances and excitation in internal dynamics. We prove that the MSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the system. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a hardware in the loop simulation of our proposed multi-surface sliding control (MSSC) for trajectory tracking of 6 degrees of freedom (6-DOF) inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). Using MSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. The control law is implemented on an onboard computer and is validated though Hardware-In-the-Loop (HIL) simulations, between the hardware and the flight simulator X-Plane, which simulates the unmanned aircraft dynamics, sensors, and actuators. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents recent developments to a vision-based traffic surveillance system which relies extensively on the use of geometrical and scene context. Firstly, a highly parametrised 3-D model is reported, able to adopt the shape of a wide variety of different classes of vehicle (e.g. cars, vans, buses etc.), and its subsequent specialisation to a generic car class which accounts for commonly encountered types of car (including saloon, batchback and estate cars). Sample data collected from video images, by means of an interactive tool, have been subjected to principal component analysis (PCA) to define a deformable model having 6 degrees of freedom. Secondly, a new pose refinement technique using “active” models is described, able to recover both the pose of a rigid object, and the structure of a deformable model; an assessment of its performance is examined in comparison with previously reported “passive” model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence. Typical applications for this work include robot surveillance and navigation tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of generating a realistic coherent phantom track by a group of ECAVs (Electronic Combat Aerial Vehicles) to deceive a radar network. The phantom track considered is the trajectory of a missile guided by proportional navigation. Sufficient conditions for the existence of feasible ECAV trajectories to generate the phantom track is presented. The line-of-sight guidance law is used to control the ECAVs for practical implementation. A performance index is developed to assess the performance of the ECAVS. Simulation results for single and multiple ECAVs generating the coherent phantom track are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage (i.e.at small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage (i.e.at large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise vibration region,the vibration frequency of the cylinder with a small mass ratio (e.g.mx = 1.44) undergoes a jump at a certain Vr,.The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case,but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom (transverse).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a tensegrity-based co-operative control algorithm for an aircraft formation. The 6 degrees-of-freedom model of the well-known Aerosonde unmanned aerial vehicle (UAV), is integrated with the model of the tensegrity structure and a decentralised control scheme is proposed. The strategy is shown to be scalable for 2n number of UAVs and is able to maintain a firm geometry whilst allowing flexible shape transformations. Simulation results demonstrate the effectiveness and stability of the proposed tensegrity-based formation control algorithm in 3D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of peak-dose drug-induced dyskinesia (DID) on manual tracking (MT) was examined in 10 dyskinetic patients (OPO), and compared to 10 age/gendermatched non-dyskinetic patients (NDPD) and 10 healthy controls. Whole body movement (WBM) and MT were recorded with a 6-degrees of freedom magnetic motion tracker and forearm rotation sensors, respectively. Subjects were asked to match the length of a computer-generated line with a line controlled via wrist rotation. Results show that OPO patients had greater WBM displacement and velocity than other groups. All groups displayed increased WBM from rest to MT, but only DPD and NDPO patients demonstrated a significant increase in WBM displacement and velocity. In addition, OPO patients exhibited excessive increase in WBM suggesting overflow DID. When two distinct target pace segments were examined (FAST/SLOW), all groups had slight increases in WBM displacement and velocity from SLOW to FAST, but only OPO patients showed significantly increased WBM displacement and velocity from SLOW to FAST. Therefore, it can be suggested that overflow DID was further increased with increased task speed. OPO patients also showed significantly greater ERROR matching target velocity, but no significant difference in ERROR in displacement, indicating that significantly greater WBM displacement in the OPO group did not have a direct influence on tracking performance. Individual target and performance traces demonstrated this relatively good tracking performance with the exception of distinct deviations from the target trace that occurred suddenly, followed by quick returns to the target coherent in time with increased performance velocity. In addition, performance hand velocity was not correlated with WBM velocity in DPO patients, suggesting that increased ERROR in velocity was not a direct result of WBM velocity. In conclusion, we propose that over-excitation of motor cortical areas, reported to be present in DPO patients, resulted in overflow DID during voluntary movement. Furthermore, we propose that the increased ERROR in velocity was the result of hypermetric voluntary movements also originating from the over-excitation of motor cortical areas.