922 resultados para 44-389


Relevância:

20.00% 20.00%

Publicador:

Resumo:

通过对沈阳市建成区城市树木的调查分析发现:沈阳市的各土地类型中的树木分布不均,其中,被调查的256块样地中每公顷物种小于或等于5种的样地有113块,占总调查样地的44.14%,每公顷小于或等于10株的样地共43块,占总样地的16.80%;利用树种多度重要性排序及累积贡献率获得了不同土地类型中的主要树种;多个生物多样性指数表明,公园性质的绿地树种多样性最高,企事业单位用地与居住区用地次之,街道类用地较低,而商业金融用地最低;并对沈阳市的树种发展提出建议。

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

8 fotografías a color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatostatin receptor 2 (SSTR2) is expressed by most medulloblastomas (MEDs). We isolated monoclonal antibodies (MAbs) to the 12-mer (33)QTEPYYDLTSNA(44), which resides in the extracellular domain of the SSTR2 amino terminus, screened the peptide-bound MAbs by fluorescence microassay on D341 and D283 MED cells, and demonstrated homogeneous cell-surface binding, indicating that all cells expressed cell surface-detectable epitopes. Five radiolabeled MAbs were tested for immunoreactive fraction (IRF), affinity (KA) (Scatchard analysis vs. D341 MED cells), and internalization by MED cells. One IgG(3) MAb exhibited a 50-100% IRF, but low KA. Four IgG(2a) MAbs had 46-94% IRFs and modest KAs versus intact cells (0.21-1.2 x 10(8) M(-1)). Following binding of radiolabeled MAbs to D341 MED at 4 degrees C, no significant internalization was observed, which is consistent with results obtained in the absence of ligand. However, all MAbs exhibited long-term association with the cells; binding at 37 degrees C after 2 h was 65-66%, and after 24 h, 52-64%. In tests with MAbs C10 and H5, the number of cell surface receptors per cell, estimated by Scatchard and quantitative FACS analyses, was 3.9 x 10(4) for the "glial" phenotype DAOY MED cell line and 0.6-8.8 x 10(5) for four neuronal phenotype MED cell lines. Our results indicate a potential immunotherapeutic application for these MAbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation we describe the preparation, physical characterisation and in vivo behaviour of solid dispersions of a liquid nutraceutical, ±-tocopherol, in Gelucire 44/14 with a view to establishing whether dispersion in this matrix may provide a means of formulating a liquid drug in a solid dosage form while also improving the oral bioavailability. Using Vitamin E Preparation USP as the source of ±-tocopherol, dispersions were prepared using a melt-fusion method with active loadings up to 50% (w/w) and characterised using differential scanning calorimetry and optical microscopy. Capsules containing 300 IU ±-tocopherol were manufactured and the absorption profiles compared to a commercial soft gelatin capsule preparation in healthy human volunteers. Confocal laser scanning microscopy (CLSM) studies were performed in order to elucidate the mechanism by which drug release may be occurring. Differential scanning calorimetry studies indicated that the presence of the active had a negligible effect on the melting profile of the carrier, indicating limited miscibility between the two components, a conclusion supported by the microscopy studies. Similarly, the dispersions were shown to exhibit a glass transition corresponding to the incorporated drug, indicating molecular cooperativity and hence phase separation from the lipid base. Despite the phase separation, it was noted that capsules stored for 18 months under ambient conditions showed no evidence of leakage. Bioavailability studies in six healthy male volunteers indicated that the Gelucire 44/14 formulation showed an approximately two-fold increase in total ±-tocopherol absorption compared to the commercial preparation. Confocal laser scanning microscopy studies indicated that, on contact with water, the dispersions formed two interfacial layers, from which the Gelucire 44/14 disperses in the liquid medium as small particles. Furthermore, evidence was obtained for the dispersed material becoming incorporated into the hydrated lipid. In conclusion, the dispersion of the liquid drug in Gelucire 44/14 appears to allow the dual advantages of the preparation of a solid formulation and improved bioavailability of this material.