921 resultados para 320300 Medical Biochemistry and Clinical Chemistry
Resumo:
OBJECTIVE To investigate the impact of new-onset diabetic ketoacidosis (DKA) during child- hood on brain morphology and function. RESEARCH DESIGN AND METHODS Patients aged 6–18 years with and without DKA at diagnosis were studied at four time points: <48 h, 5 days, 28 days, and 6 months postdiagnosis. Patients under- went magnetic resonance imaging (MRI) and spectroscopy with cognitive assess- ment at each time point. Relationships between clinical characteristics at presentation and MRI and neurologic outcomes were examined using multiple linear regression, repeated-measures, and ANCOVA analyses. RESULTS Thirty-six DKA and 59 non-DKA patients were recruited between 2004 and 2009. With DKA, cerebral white matter showed the greatest alterations with increased total white matter volume and higher mean diffusivity in the frontal, temporal, and parietal white matter. Total white matter volume decreased over the first 6 months. For gray matter in DKA patients, total volume was lower at baseline and increased over 6 months. Lower levels of N-acetylaspartate were noted at base- line in the frontal gray matter and basal ganglia. Mental state scores were lower at baseline and at 5 days. Of note, although changes in total and regional brain volumes over the first 5 days resolved, they were associated with poorer delayed memory recall and poorer sustained and divided attention at 6 months. Age at time of presentation and pH level were predictors of neuroimaging and functional outcomes. CONCLUSIONS DKA at type 1 diabetes diagnosis results in morphologic and functional brain changes. These changes are associated with adverse neurocognitive outcomes in the medium term.
Resumo:
We report a new tuneable alternating current (ac) electrohydrodynamics (ac-EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac-EHD field strength. The ability to manipulate ac-EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over onspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof-of-concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90%; %RSD=2, n=3) with a 10-fold reduction in nonspecific dsorption of non-target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac-EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.
Resumo:
Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC.
Resumo:
Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.
Resumo:
- Gender dysphoria is a condition in which a child's subjectively felt identity and gender are not congruent with her or his biological sex. Because of this, the child suffers clinically significant distress or impairment in social functioning. - The Family Court of Australia has recently received an increasing number of applications seeking authorisation for the provision of hormones to treat gender dysphoria in children. - Some medical procedures and interventions performed on children are of such a grave nature that court authorisation must be obtained to render them lawful. These procedures are referred to as special medical procedures. - Hormonal therapy for the treatment of gender dysphoria in children is provided in two stages occurring years apart. Until recently, both stages of treatment were regarded by courts as special medical treatments, meaning court authorisation had to be provided for both stages. - In a significant recent development, courts have drawn a distinction between the two stages of treatment, permitting parents to consent to the first stage. In addition, it has been held that a child who is determined by a court to be Gillick competent can consent to stage 2 treatment. - The new legal developments concerning treatment for gender dysphoria are of ethical, clinical and practical importance to children and their families, and to medical practitioners treating children with gender dysphoria. Medical practitioners should benefit from an understanding of the recent developments in legal principles. This will ensure that they have up-to-date information about the circumstances under which treatment may be conducted with parental consent, and those in which they must seek court authorisation.
Resumo:
BACKGROUND Law is increasingly involved in clinical practice, particularly at the end of life, but undergraduate and postgraduate education in this area remains unsystematic. We hypothesised that attitudes to and knowledge of the law governing withholding/withdrawing treatment from adults without capacity (the WWLST law) would vary and demonstrate deficiencies among medical specialists. AIMS We investigated perspectives, knowledge and training of medical specialists in the three largest (populations and medical workforces) Australian states, concerning the WWLST law. METHODS Following expert legal review, specialist focus groups, pre-testing and piloting in each state, seven specialties involved with end-of-life care were surveyed, with a variety of statistical analyses applied to the responses. RESULTS Respondents supported the need to know and follow the law. There were mixed views about its helpfulness in medical decision-making. Over half the respondents conceded poor knowledge of the law; this was mirrored by critical gaps in knowledge that varied by specialty. There were relatively low but increasing rates of education from the undergraduate to continuing professional development (CPD) stages. Mean knowledge score did not vary significantly according to undergraduate or immediate postgraduate training, but CPD training, particularly if recent, resulted in greater knowledge. Case-based workshops were the preferred CPD instruction method. CONCLUSIONS Teaching of current and evolving law should be strengthened across all stages of medical education. This should improve understanding of the role of law, ameliorate ambivalence towards the law, and contribute to more informed deliberation about end-of-life issues with patients and families.
Resumo:
Burn injury is a prevalent and traumatic event for pediatric patients. At present, the diagnosis of burn injury severity is subjective and lacks a clinically relevant quantitative measure. This is due in part to a lack of knowledge surrounding the biochemistry of burn injuries and that of blister fluid. A more complete understanding of the blister fluid biochemistry may open new avenues for diagnostic and prognostic development. Burn insult induces a highly complex network of signaling processes and numerous changes within various biochemical systems, which can ultimately be examined using proteome and metabolome measurements. This review reports on the current understanding of burn wound biochemistry and outlines a technical approach for ‘omics’ profiling of blister fluid from burn wounds of differing severity.
Resumo:
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare, dominantly inherited tumor predisposition syndrome characterized by benign cutaneous and uterine (ULM) leiomyomas, and sometimes renal cell cancer (RCC). A few cases of uterine leiomyosarcoma (ULMS) have also been reported. Mutations in a nuclear gene encoding fumarate hydratase (FH), an enzyme of the mitochondrial tricarboxylic acid cycle (TCA cycle), underlie HLRCC. As a recessive condition, germline mutations in FH predispose to a neurological defect, FH deficiency (FHD). Hereditary paragangliomatosis (HPGL) is a dominant disorder associated with paragangliomas and pheochromocytomas. Inherited mutations in three genes encoding subunits of succinate dehydrogenase (SDH), also a TCA cycle enzyme, predispose to HPGL. Both FH and SDH seem to act as tumor suppressors. One of the consequences of the TCA cycle defect is abnormal activation of HIF1 pathway ( pseudohypoxia ) in the HLRCC and HPGL tumors. HIF1 drives transcription of genes encoding e.g. angiogenetic factors which can facilitate tumor growth. Recently hypoxia/HIF1 has been suggested to be one of the causes of genetic instability as well. One of the aims of this study was to broaden the clinical definers of HLRCC. To determine the cancer risk and to identify possible novel tumor types associated with FH mutations eight Finnish HLRCC/FHD families were extensively evaluated. The extension of the pedigrees and the Finnish Cancer Registry based tumor search yielded genealogical and cancer data of altogether 868 individuals. The standardized incidence ratio-based comparison of HLRCC/FHD family members with general Finnish population revealed 6.5-fold risk for RCC. Moreover, risk for ULMS was highly increased. However, according to the recent and more stringent diagnosis criteria of ULMS many of the HLRCC uterine tumors previously considered malignant are at present diagnosed as atypical or proliferative ULMs (with a low risk of recurrence). Thus, the formation of ULMS (as presently defined) in HLRCC appears to be uncommon. Though increased incidence was not observed, interestingly the genetic analyses suggested possible association of breast and bladder cancer with loss of FH. Moreover, cancer cases were exceptionally detected in an FHD family. Another clinical finding was the conventional (clear cell) type RCC of a young Spanish HLRCC patient. Conventional RCC is distinct from the types previously observed in this syndrome but according to these results, FH mutation may underlie some of young conventional cancer cases. Secondly, the molecular pathway from defective TCA cycle to tumor formation was intended to clarify. Since HLRCC and HPGL tumors display abnormally activated HIF1, the hypothesis on the link between HIF1/hypoxia and genetic instability was of interest to study in HLRCC and HPGL tumor material. HIF1α (a subunit of HIF1) stabilization was confirmed in the majority of the specimens. However, no repression of MSH2, a protein of DNA mismatch repair system, or microsatellite instability (MSI), an indicator of genetic instability, was observed. Accordingly, increased instability seems not to play a role in the tumorigenesis of pseudohypoxic TCA cycle-deficient tumors. Additionally, to study the putative alternative functions of FH, a recently identified alternative FH transcript (FHv) was characterized. FHv was found to contain instead of exon 1, an alternative exon 1b. Differential subcellular distribution, lack of FH enzyme activity, low mRNA expression compared to FH, and induction by cellular stress suggest FHv to have a role distinct from FH, for example in apoptosis or survival. However, the physiological significance of FHv requires further elucidation.
Resumo:
DNA ja siinä sijaitsevat geenit ohjaavat kaikkea solujen toimintaa. DNA-molekyyleihin kuitenkin kertyy mutaatioita sekä ympäristön vaikutuksen, että solujen oman toiminnan tuloksena. Mikäli virheitä ei korjata, saattaa tuloksena olla solun muuttuminen syöpäsoluksi. Soluilla onkin käytössä useita DNA-virheiden korjausmekanismeja, joista yksi on ns. mismatch repair (MMR). MMR vastaa DNA:n kahdentumisessa syntyvien virheiden korjauksesta. Periytyvät mutaatiot geeneissä, jotka vastaavat MMR-proteiinien rakentamisesta, aiheuttavat ongelmia DNA:n korjauksessa ja altistavat kantajansa periytyvälle ei-polypoottiselle paksusuolisyöpäoireyhtymälle (hereditary nonpolyposis colorectal cancer, HNPCC). Yleisimmin mutatoituneet MMR-geenit ovat MLH1 ja MSH2. HNPCC periytyy vallitsevasti, eli jo toiselta vanhemmalta peritty geenivirhe altistaa syövälle. MMR-geenivirheen kantaja sairastuu syöpään elämänsä aikana suurella todennäköisyydellä, ja sairastumisikä on vain noin 40 vuotta. Syövälle altistavan geenivirheen löytäminen mutaation kantajilta on hyvin tärkeää, sillä säännöllinen seuranta mahdollistaa kehittymässä olevan kasvaimen havaitsemisen ja poistamisen jo aikaisessa vaiheessa. Tämän on osoitettu alentavan syöpäkuolleisuutta merkittävästi. Varma tieto altistuksen alkuperästä on tärkeä myös niille syöpäsuvun jäsenille, jotka eivät kanna kyseistä mutaatiota. Syövälle altistavien mutaatioiden ohella MMR-geeneistä löydetään säännöllisesti muutoksia, jotka ovat normaalia henkilöiden välistä geneettistä vaihtelua, eikä niiden oleteta lisäävän syöpäaltistusta. Altistavien mutaatioiden erottaminen näistä neutraaleista variaatioista on vaikeaa, mutta välttämätöntä altistuneiden tehokkaan seurannan varmistamiseksi. Tässä väitöskirjassa tutkittiin 18:a MSH2 -geenin mutaatiota. Mutaatiot oli löydetty perheistä, joissa esiintyi paljon syöpiä, mutta niiden vaikutus DNA:n korjaustehoon ja syöpäaltistukseen oli epäselvä. Työssä tutkittiin kunkin mutaation vaikutusta MSH2-proteiinin normaaliin toimintaan, ja tuloksia verrattiin potilaiden ja sukujen kliinisiin tietoihin. Tutkituista mutaatiosta 12 aiheutti puutteita MMR-korjauksessa. Nämä mutaatiot tulkittiin syövälle altistaviksi. Analyyseissä normaalisti toimineet 4 mutaatiota eivät todennäköisesti ole syynä syövän syntyyn kyseisillä perheillä. Tulkinta jätettiin avoimeksi 2 mutaation kohdalla. Tutkimuksesta hyötyivät suoraan kuvattujen mutaatioiden kantajaperheet, joiden geenivirheen syöpäaltistuksesta saatiin tietoa, mahdollistaen perinnöllisyysneuvonnan ja seurannan kohdentamisen sitä tarvitseville. Työ selvensi myös mekanismeja, joilla mutatoitunut MSH2-proteiini voi menettää toimintakykynsä.
Resumo:
Undergraduate Medical Imaging (MI)students at QUT attend their first clinical placement towards the end of semester two. Students undertake two (pre)clinical skills development units – one theory and one practical. Students gain good contextual and theoretical knowledge during these units via a blended learning model with multiple learning methods employed. Students attend theory lectures, practical sessions, tutorial sessions in both a simulated and virtual environment and also attend pre-clinical scenario based tutorial sessions. The aim of this project is to evaluate the use of blended learning in the context of 1st year Medical Imaging Radiographic Technique and its effectiveness in preparing students for their first clinical experience. It is hoped that the multiple teaching methods employed within the pre-clinical training unit at QUT builds students clinical skills prior to the real situation. A quantitative approach will be taken, evaluating via pre and post clinical placement surveys. This data will be correlated with data gained in the previous year on the effectiveness of this training approach prior to clinical placement. In 2014 59 students were surveyed prior to their clinical placement demonstrated positive benefits of using a variety of learning tools to enhance their learning. 98.31%(n=58)of students agreed or strongly agreed that the theory lectures were a useful tool to enhance their learning. This was followed closely by 97% (n=57) of the students realising the value of performing role-play simulation prior to clinical placement. Tutorial engagement was considered useful for 93.22% (n=55) whilst 88.14% (n=52) reasoned that the x-raying of phantoms in the simulated radiographic laboratory was beneficial. Self-directed learning yielded 86.44% (n=51). The virtual reality simulation software was valuable for 72.41% (n=42) of the students. Of the 4 students that disagreed or strongly disagreed with the usefulness of any tool they strongly agreed to the usefulness of a minimum of one other learning tool. The impact of the blended learning model to meet diverse student needs continues to be positive with students engaging in most offerings. Students largely prefer pre -clinical scenario based practical and tutorial sessions where 'real-world’ situations are discussed.
Resumo:
As a recently developed and powerful classification tool, probabilistic neural network was used to distinguish cancer patients from healthy persons according to the levels of nucleosides in human urine. Two datasets (containing 32 and 50 patterns, respectively) were investigated and the total consistency rate obtained was 100% for dataset 1 and 94% for dataset 2. To evaluate the performance of probabilistic neural network, linear discriminant analysis and learning vector quantization network, were also applied to the classification problem. The results showed that the predictive ability of the probabilistic neural network is stronger than the others in this study. Moreover, the recognition rate for dataset 2 can achieve to 100% if combining, these three methods together, which indicated the promising potential of clinical diagnosis by combining different methods. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Staphylococcus epidermidis, the most frequently isolated coagulase-negative staphylococcus, is the leading cause of infection related to implanted medical devices (IMDs). This is directly related to its capability to establish multilayered, highly structured biofilms on artificial surfaces. At present, conventional systemic therapies using standard antimicrobial agents represent the main strategy to treat and prevent medical device-associated infections. However, device-related infections are notoriously difficult to treat and bacteria within biofilm communities on the surface of IMDs frequently outlive treatment, and removal of the medical device is often required for successful therapy. Importantly, major advances in this research area have been made, leading to a greater understanding of the complexities of biofilm formation of S. epidermidis and resulting in significant developments in the treatment and prevention of infections related to this member of the coagulase-negative group of staphylococci. This review will examine the pathogenesis of the clinically significant S. epidermidis and provide an overview of the conventional and emerging antibiofilm approaches in the management of medical device-associated infections related to this important nosocomial pathogen.