1000 resultados para 291199 Environmental Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exists a major cost issue as regards termite damage to wooden structures. A factor in this cost has been the increasing trend towards slab-on-ground construction. Current literature has been reviewed in relation to concerns about the possible public/environmental health consequences of the repeated use of termiticides in large quantities. The previous, current and projected future use patterns of termiticides are reviewed in the context of techniques appropriate for termite control and treatment priorities. The phasing out of organochlorine termiticides in Australia was undertaken to minimise impact of these substances on the environment and to a lesser extent on public health. These persistent chemicals were replaced by substances with high activity but relatively low persistence in the soil. There has also been an increase in the use of alternative methods (e.g. physical barriers) for the control of termites. The transition away from organochlorine termiticides has led to a realisation that significant information gaps exist with regard to replacement chemicals and other technologies. Although relatively persistent, the organochlorine chemicals have a limited lifespan in soils. Their concentrations are gradually attenuated by processes such as transport away from the point of application and biodegradation. Wooden structures originally treated with these substances will, with the passing of time, be at risk of termite infestation. The only available option is re-treatment with chemicals currently registered for termite control. Thus, there are likely to be substantial future increases associated with the cost of re-treatment and repairs of older slab-on-ground dwellings. More information is required on Australian termite biology, taxonomy and ecology. The risks of termite infestation need to be evaluated, both locally and nationally so that susceptible or high risk areas, structures and building types can be identified and preventive measures taken in terms of design and construction. Building regulations and designs need to be able to reduce or eliminate high-risk housing; and eliminate or reduce conditions that are attractive to termites and/or facilitate termite infestation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to quantity the effect of filter bed depth and solid waste inputs on the performance of small-scale vermicompost filter beds that treat the soluble contaminants within domestic wastewater. The study also aims to identify environmental conditions within the filters by quantifying the oxygen content and pH of wastewater held within it. Vermicompost is being utilised within commercially available on-site domestic waste treatment systems however, there are few reported studies that have examined this medium for the purpose of wastewater treatment. Three replicate small-scale reactors were designed to enable wastewater sampling at five reactor depths in 10-cm intervals. The surface of each reactor received household solid organic waste and 1301 m(-2) per day of raw domestic wastewater. The solid waste at the filter bed surface leached oxygen demand into the wastewater flowing through it. The oxygen demand was subsequently removed in lower reactor sections. Both nitrification and denitrification occurred in the bed. The extent of denitrification was a function of BOD leached from the solid waste. The environmental conditions measured within the bed were found to be suitable for earthworms living within them. The study identified factors that will affect the performance and application of the vermicompost filtration technology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we proposed a composite depth of penetration (DOP) approach to excluding bottom reflectance in mapping water quality parameters from Landsat thematic mapper (TM) data in the shallow coastal zone of Moreton Bay, Queensland, Australia. Three DOPs were calculated from TM1, TM2 and TM3, in conjunction with bathymetric data, at an accuracy ranging from +/-5% to +/-23%. These depths were used to segment the image into four DOP zones. Sixteen in situ water samples were collected concurrently with the recording of the satellite image. These samples were used to establish regression models for total suspended sediment (TSS) concentration and Secchi depth with respect to a particular DOP zone. Containing identical bands and their transformations for both parameters, the models are linear for TSS concentration, logarithmic for Secchi depth. Based on these models, TSS concentration and Secchi depth were mapped from the satellite image in respective DOP zones. Their mapped patterns are consistent with the in situ observed ones. Spatially, overestimation and underestimation of the parameters are restricted to localised areas but related to the absolute value of the parameters. The mapping was accomplished more accurately using multiple DOP zones than using a single zone in shallower areas. The composite DOP approach enables the mapping to be extended to areas as shallow as <3 m. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A broad review of technologically focused work concerning biomolecules at interfaces is presented. The emphasis is on developments in interfacial biomolecular engineering that may have a practical impact in bioanalysis, tissue engineering, emulsion processing or bioseparations. We also review methods for fabrication in an attempt to draw out those approaches that may be useful for product manufacture, and briefly review methods for analysing the resulting interfacial nanostructures. From this review we conclude that the generation of knowledge and-innovation at the nanoscale far exceeds our ability to translate this innovation into practical outcomes addressing a market need, and that significant technological challenges exist. A particular challenge in this translation is to understand how the structural properties of biomolecules control the assembled architecture, which in turn defines product performance, and how this relationship is affected by the chosen manufacturing route. This structure-architecture-process-performance (SAPP) interaction problem is the familiar laboratory scale-up challenge in disguise. A further challenge will be to interpret biomolecular self- and directed-assembly reactions using tools of chemical reaction engineering, enabling rigorous manufacturing optimization of self-assembly laboratory techniques. We conclude that many of the technological problems facing this field are addressable using tools of modem chemical and biomolecular engineering, in conjunction with knowledge and skills from the underpinning sciences. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most adverse environmental impacts result from design decisions made long before manufacturing or usage. In order to prevent this situation, several authors have proposed the application of life cycle assessment (LCA) at the very first phases of the design of a process, a product or a service. The study in this paper presents an innovative thermal drying process for sewage sludge called fry-drying, in which dewatered sludge is directly contacted in the dryer with hot recycled cooking oils (RCO) as the heat medium. Considering the practical difficulties for the disposal of these two wastes, fry-drying presents a potentially convenient method for their combined elimination by incineration of the final fry-dried sludge. An analytical comparison between a conventional drying process and the new proposed fry-drying process is reported, with reference to some environmental impact categories. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such system compared to a current disposal process for the drying and incineration of sewage sludge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 g NH4+-N m(-3) d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2gCODg(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation. (c) 2006 Elsevier Ltd. All rights reserved.