1000 resultados para 291199 Environmental Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to ultrafine particles (UFPs) is deemed to be a major risk affecting human health. Therefore, airborne particle studies were performed in the recent years to evaluate the most critical micro-environments, as well as identifying the main UFP sources. Nonetheless, in order to properly evaluate the UFP exposure, personal monitoring is required as the only way to relate particle exposure levels to the activities performed and micro-environments visited. To this purpose, in the present work, the results of experimental analysis aimed at showing the effect of the time-activity patterns on UFP personal exposure are reported. In particular, 24 non-smoking couples (12 during winter and summer time, respectively), comprised of a man who worked full-time and a woman who was a homemaker, were analyzed using personal particle counter and GPS monitors. Each couple was investigated for a 48-h period, during which they also filled out a diary reporting the daily activities performed. Time activity patterns, particle number concentration exposure and the related dose received by the participants, in terms of particle alveolar-deposited surface area, were measured. The average exposure to particle number concentration was higher for women during both summer and winter (Summer: women 1.8×104 part. cm-3; men 9.2×103 part. cm-3; Winter: women 2.9×104 part. cm-3; men 1.3×104 part. cm-3), which was likely due to the time spent undertaking cooking activities. Staying indoors after cooking also led to higher alveolar-deposited surface area dose for both women and men during the winter time (9.12×102 and 6.33×102 mm2, respectively), when indoor ventilation was greatly reduced. The effect of cooking activities was also detected in terms of women’s dose intensity (dose per unit time), being 8.6 and 6.6 in winter and summer, respectively. On the contrary, the highest dose intensity activity for men was time spent using transportation (2.8 in both winter and summer).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor vehicles emit large quantities of ions in the form of both charged particles and molecular cluster ions. While, the health effects of inhalation of charged particles is largely unexplored, the concentrations near busy roads and the distance to which these particles and ions are carried have important implications for the exposure of the large percentage of the population that lives close to such roadways. We measured ion concentrations using a neutral cluster and air ion spectrometer (NAIS) near seven busy roads carrying on the average approximately 7000 vehicles hr-1 including about 15% heavy duty diesel vehicles. In this study, charged particle concentrations were measured as a function of downwind distance from the road for the first time. We show that, at a moderate wind speed of 2.0 m s-1, mean charged particle concentrations at the kerb were of the order of 2x104 cm-3 and, more importantly, decreased as d 0.6 where d is the distance from the road. While cluster ions were rapidly depleted by attachment to particles and were not carried to more than about 20 m from the road, elevated concentrations of charged particle were detected up to at least 400 m from the road. Most of the charge on the downwind side was carried on the larger particles, with no excess charge on particles smaller than about 10 nm. At 30 nm, particles carried more than double the charge they would normally carry in equilibrium. There are very few measurements of ions near road traffic and this is the first study of the spatial dispersion of charged particles from a road.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been considerable scientific interest in personal exposure to ultrafine particles (UFP). In this study, the inhaled particle surface area doses and dose relative intensities in the tracheobronchial and alveolar regions of lungs were calculated using the measured 24-hour UFP time series of school children personal exposures for each recorded activity. Bayesian hierarchical modelling was used to determine mean doses and dose intensities for the various microenvironments. Analysis of measured personal exposures for 137 participating children from 25 schools in the Brisbane Metropolitan Area showed similar trends for all the participating children. Bayesian regression modelling was performed to calculate the daily proportion of children's total doses at different microenvironments. The proportion of alveolar doses in the total daily dose for \emph{home}, \emph{school}, \emph{commuting} and \emph{other} were 55.3\%, 35.3\%, 4.5\% and 5.0\%, respectively, with the \emph{home} microenvironment contributing a majority of children's total daily dose. Children's mean indoor dose was never higher than the outdoor's at any of the schools, indicating there were no persistent indoor particle sources in the classrooms during the measurements. Outdoor activities, eating/cooking at home and commuting were the three activities with the highest dose intensities. Personal exposure was more influenced by the ambient particle levels than immediate traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lady Elliot Island eco-resort, on the Great Barrier Reef, operates with a strong sustainability ethic, and has broken away from its reliance on diesel generators, an initiative which has ongoing and substantial economic benefit. The first step was an energy audit that led to a 35% reduction in energy usage, to an average of 575 kWh per day. The eco-resort then commissioned a hybrid solar power station, in 2008, with energy storage in battery banks. Solar power is currently (2013) providing about 160 kWh of energy per day, and the eco-resort’s diesel fuel usage has decreased from 550 to 100 litres per day, enabling the power station to pay for itself in 3 years. The eco-resort plans to complete its transition to renewable energy by 2015, by installing additional solar panels, and a 10-15 kW wind turbine. This paper starts by discussing why the eco-resort chose a hybrid solar power station to transition to renewable energy, and the barriers to change. It then describes the power station, upgrades through to 2013, the power control system, the problems that were solved to realise the potential of a facility operating in a harsh and remote environment, and its performance. The paper concludes by outlining other eco-resort sustainability practices, including education and knowledge-sharing initiatives, and monitoring the island’s environmental and ecological condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the impact of the HVAC filtration system and indoor particle sources on the relationship between indoor and outdoor airborne particle size and concentrations in an operating room. Filters with efficiency between 65% and 99.97% were used in the investigation and indoor and outdoor particle size and concentrations were measured. A balance mass model was used for the simulation of the impact of the surgical team, deposition rate, HVAC exhaust and air change rates on indoor particle concentration. The experimental results showed that high efficiency filters would not be expected to decrease the risk associated with indoor particles larger than approximately 1 µm in size because normal filters are relatively efficient for these large particles. A good fraction of outdoor particles were removed by deposition on the HVAC system surfaces and this deposition increased with particle size. For particles of 0.3-0.5 µm in diameter, particle reduction was about 23%, while for particles >10 µm the loss was about 78%. The modelling results showed that depending on the type of filter used, the surgical team generated between 93-99% of total particles, while the outdoor air contributed only 1-6%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although both the size and chemical composition of ambient particles are important parameters in determining their toxicities, their relative contributions are unclear (Heal et al., 2012). Children are particularly at risk to the detrimental health effects that have been linked to long term exposure to airborne particles (See e.g. Ruckerl et al., 2011). However, there is currently limited understanding of the health effects in children due to long term exposure to airborne particles. Schools are locations within an urban environment where children experience significant exposure to vehicle emissions, and to date there is limited information assessing children’s exposure at school. This study is a part of a large project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants. In the current paper, results from the investigation of the elemental composition of airborne particle at urban schools are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project was conducted at Lithgow Correctional Centre (LCC), NSW, Australia. Air quality field measurements were conducted on two occasions (23-27 May 2012, and 3-8 December 2012), just before and six months after the introduction of smoke free buildings policies (28 May 2012) at the LCC, respectively. The main aims of this project were to: (1) investigate the indoor air quality; (2) quantify the level of exposure to environmental tobacco smoke (ETS); (3) identify the main indoor particle sources; (4) distinguish between PM2.5 / particle number from ETS, as opposed to other sources; and (5) provide recommendations for improving indoor air quality and/or minimising exposure at the LCC. The measurements were conducted in Unit 5.2A, Unit 5.2B, Unit 1.1 and Unit 3.1, together with personal exposure measurements, based on the following parameters: -Indoor and outdoor particle number (PN) concentration in the size range 0.005-3 µm -Indoor and outdoor PM2.5 particle mass concentration -Indoor and outdoor VOC concentrations -Personal particle number exposure levels (in the size range 0.01-0.3 µm) -Indoor and outdoor CO and CO2 concentrations, temperature and relative humidity In order to enhance the outcomes of this project, the indoor and outdoor particle number (PN) concentrations were measured by two additional instruments (CPC 3787) which were not listed in the original proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report was produced by the Decoupling Working Group of the International Resource Panel. It explores technological possibilities and opportunities for both developing and developed countries to accelerate decoupling and reap the environmental and economic benefits of increased resource productivity. It also examines several policy options that have proved to be successful in helping different countries to improve resource productivity in various sectors of their economy, avoiding negative impacts on the environment. It does not seem possible for a global economy based on the current unsustainable patterns of resource use to continue into the future. The economic consequences of these patterns are already apparent in three areas: increases in resource prices, increased price volatility and disruption of environmental systems. The environment impacts of resource use are also leading to potentially irreversible changes to the world’s ecosystems, often with direct effects on people and the economy – for example through damage to health, water shortages, loss of fish stocks or increased storm damage. But there are alternatives to these scary patterns. Many decoupling technologies and techniques that deliver resource productivity increases as high as 5 to 10-fold are already available, allowing countries to pursue their development strategies while significantly reducing their resource footprint and negative impacts on the environment. This report shows that much of the policy design “know-how” needed to achieve decoupling is present in terms of legislation, incentive systems, and institutional reform. Many countries have tried these out with tangible results, encouraging others to study and where appropriate replicate and scale up such practices and successes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine particles (UFP; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggest that average exposure to outdoor UFPs in Asian cities is about four-times larger than those in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While concrete recycling is practiced worldwide, there are many unanswered questions in relation to ultrafine particle (UFP; Dp<100nm) emissions and exposure around recycling sites. In particular: (i) Does recycling produce UFPs and in what quantities? (ii) How do they disperse around the source? (iii) What impact does recycling have on ambient particle number concentrations (PNCs) and exposure? (iv) How effective are commonly used dust respirators to limit exposure? We measured size-resolved particles in the 5-560 nm range at five distances from a simulated concrete recycling source and found that: (i) the size distributions were multimodal, with up to ~93% of total PNC in the UFP size range; and (ii) dilution was a key particle transformation mechanism. UFPs showed a much slower decay rate, requiring ~62% more distance to reach 10% of their initial concentration compared with their larger counterparts. Compared with typical urban exposure during car journeys, exposure decay profiles showed up to ~5 times higher respiratory deposition within 10 m of the source. Dust respirators were found to remove half of total PNC; however the removal factor for UFPs was only ~57% of that observed in the 100-560 nm size range. These findings highlight a need for developing an understanding of the nature of the particles as well as for better control measures to limit UFP exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm-3, 15 µg m-3, 804 cfu m-3 and 177 cfu m-3 for flood-affected houses (AFH), and 2.74 p cm-3, 15 µg m-3, 547 cfu m-3 and 167 cfu m-3 for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 µg m-2 for AFH and 1454 ± 678 µg m-2 for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to investigate changes in particle number concentration (PNC) within naturally ventilated primary school classrooms arising from local sources either within or adjacent to the classrooms. We quantify the rate at which ultrafine particles were emitted either from printing, grilling, heating or cleaning activities and the rate at which the particles were removed by both deposition and air exchange processes. At each of 25 schools in Brisbane, Australia, two weeks of measurements of PNC and CO2 were taken both outdoors and in the two classrooms. Bayesian regression modelling was employed in order to estimate the relevant rates and analyse the relationship between air exchange rate (AER), particle infiltration and the deposition rates of particle generated from indoor activities in the classrooms. During schooling hours, grilling events at the school tuckshop as well as heating and printing in the classrooms led to indoor PNCs being elevated by a factor of more than four, with emission rates of (2.51 ± 0.25) x 1011 p min-1, (8.99 ± 6.70) x 1011 p min-1 and (5.17 ± 2.00) x 1011 p min-1, respectively. During non-school hours, cleaning events elevated indoor PNC by a factor of above five, with an average emission rate of (2.09 ± 6.30) x 1011 p min-1. Particles were removed by both air exchange and deposition; chiefly by ventilation when AER > 0.7 h-1 and by deposition when AER < 0.7 h-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.