968 resultados para 2 hydroxypropyl beta cyclodextrin
Resumo:
Tight junctions between intestinal epithelial cells prevent ingress of luminal macromolecules and bacteria and protect against inflammation and infection. During stress and inflammation, mast cells mediate increased mucosal permeability by unknown mechanisms. We hypothesized that mast cell tryptase cleaves protease-activated receptor 2 (PAR2) on colonocytes to increase paracellular permeability. Colonocytes expressed PAR2 mRNA and responded to PAR2 agonists with increased [Ca2+]i. Supernatant from degranulated mast cells increased [Ca2+]i in colonocytes, which was prevented by a tryptase inhibitor, and desensitized responses to PAR2 agonist, suggesting PAR2 cleavage. When applied to the basolateral surface of colonocytes, PAR2 agonists and mast cell supernatant decreased transepithelial resistance, increased transepithelial flux of macromolecules, and induced redistribution of tight junction ZO-1 and occludin and perijunctional F-actin. When mast cells were co-cultured with colonocytes, mast cell degranulation increased paracellular permeability of colonocytes. This was prevented by a tryptase inhibitor. We determined the role of ERK1/2 and of beta-arrestins, which recruit ERK1/2 to PAR2 in endosomes and retain ERK1/2 in the cytosol, on PAR2-mediated alterations in permeability. An ERK1/2 inhibitor abolished the effects of PAR2 agonist on permeability and redistribution of F-actin. Down-regulation of beta-arrestins with small interfering RNA inhibited PAR2-induced activation of ERK1/2 and suppressed PAR2-induced changes in permeability. Thus, mast cells signal to colonocytes in a paracrine manner by release of tryptase and activation of PAR2. PAR2 couples to beta-arrestin-dependent activation of ERK1/2, which regulates reorganization of perijunctional F-actin to increase epithelial permeability. These mechanisms may explain the increased epithelial permeability of the intestine during stress and inflammation.
Resumo:
The benznidazole (BNZ) is the only alternative for Chagas disease treatment in Brazil. This drug has low solubility, which restricts its dissolution rate. Thus, the present work aimed to study the BNZ interactions in binary systems with beta cyclodextrin (β-CD) and hydroxypropyl-beta cyclodextrin (HP-β-CD), in order to increase the apparent aqueous solubility of drug. The influence of seven hydrophilic polymers, triethanolamine (TEA) and 1-methyl-2- pyrrolidone (NMP) in benznidazole apparent aqueous solubility, as well as the formation of inclusion complexes was also investigated. The interactions in solution were predicted and investigated using phase solubility diagram methodology, nuclear magnetic resonance of protons (RMN) and molecular modeling. Complexes were obtained in solid phase by spray drying and physicochemical characterization included the UV-Vis spectrophotometric spectroscopy in the infrared region, scanning electron microscopy, X-ray diffraction and dissolution drug test from the different systems. The increment on apparent aqueous solubility of drug was achieved with a linear type (AL) in presence of both cyclodextrins at different pH values. The hydrophilic polymers and 1-methyl-2-pyrrolidone contributes to the formation of inclusion complexes, while the triethanolamine decreased the complex stability constant (Kc). The log-linear model applied for solubility diagrams revealed that both triethanolamine and 1-methyl-2-pyrrolidone showed an action cosolvent (both solvents) and complexing (1-methyl-2-pyrrolidone). The best results were obtained with complexes involving 1-methyl-2-pyrrolidone and hydroxypropylbeta- cyclodextrin, with an increased of benznidazole solubility in 27.9 and 9.4 times, respectively. The complexes effectiveness was proven by dissolution tests, in which the ternary complexes and physical mixtures involving 1-methyl- 2-pyrrolidone and both cyclodextrins investigated showed better results, showing the potential use as novel pharmaceutical ingredient, that leads to increased benznidazole bioavailability
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An initiation-promotion medium-term bioassay for detection of chemical carcinogens, developed in the male F344 rat, uses 0.1% N-bis(2-hydroxypropyl)nitrosamine (DHPN) among five genotoxic chemicals for the initiation of carcinogenesis in multiple organs. To establish this bioassay in the Wistar strain, the effects of two dose levels of DHPN were evaluated on the main DHPN rat target organs: lung, thyroid gland, kidneys and liver. Four groups of male and female animals were studied: Control--untreated group; Multi-organ initiated group (also referred to as DMBDD, based on the initials of the five initiators)-treated sequentially with N-diethylnitrosamine (DEN, i.p.), N-methyl-N-nitrosourea (MNU, i.p.), N-butyl-N-(4-hydroxy butyl)nitrosamine (BBN, drinking water), N, N'-dimethylhydrazine (DMH, s.c.) and DHPN (drinking water) for 4 weeks; a third group treated with 0.1% DHPN in drinking water for 2 weeks and the last group treated with 0.2% DHPN in drinking water for 4 weeks. The animals were sacrificed after 30 weeks. DHPN at 0.2% induced preneoplasia in the liver and kidneys of rats of both sexes, the number and area of the putative preneoplastic liver glutathione S-transferase-positive hepatocyte foci being significantly increased in these animals. It also induced benign and malignant tumors in female and in male rats. However, there was no relationship between the increased incidence of preneoplastic lesions and tumor development in the 0.2% DHPN-exposed groups of both sexes. DHPN at 0.1% induced only a few preneoplastic lesions in the liver and kidney and no tumors in both male and female rats. A clear dose and sex-related carcinogenic activity of DHPN was registered, although Wistar rats of both sexes showed a relative resistance to the carcinogenic activity of this compound.
Resumo:
Papain is a proteolytic enzyme with restricted applications due to its limited stability. Cyclodextrins are widely used in pharmaceutical formulations once they are able to form complexes with other molecules, improving their stability and bioavailability. The purpose of the present paper was to analyze complexes formed by papain/hydroxypropyl-beta-cyclodextrin and papain/beta-cyclodextrin by thermal analysis and cytotoxicity tests to verify their possible interactions and toxicological behavior. Complex solutions were prepared at different molar ratios and collected as a function of time to be lyophilized and analyzed. Results showed changes in endothermic events and cytotoxicity profiles. A complex formation for both complexes is observed; nevertheless, beta-cyclodextrin was able to change the enzyme characteristics more efficiently.
Resumo:
In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dysregulation of the WNT and insulin-like growth factor 2 (IGF2) signaling pathways has been implicated in sporadic and syndromic forms of adrenocortical carcinoma (ACC). Abnormal beta-catenin staining and CTNNB1 mutations are reported to be common in both adrenocortical adenoma and ACC, whereas elevated IGF2 expression is associated primarily with ACC. To better understand the contribution of these pathways in the tumorigenesis of ACC, we examined clinicopathological and molecular data and used mouse models. Evaluation of adrenal tumors from 118 adult patients demonstrated an increase in CTNNB1 mutations and abnormal beta-catenin accumulation in both adrenocortical adenoma and ACC. In ACC, these features were adversely associated with survival. Mice with stabilized beta-catenin exhibited a temporal progression of increased adrenocortical hyperplasia, with subsequent microscopic and macroscopic adenoma formation. Elevated Igf2 expression alone did not cause hyperplasia. With the combination of stabilized beta-catenin and elevated Igf2 expression, adrenal glands were larger, displayed earlier onset of hyperplasia, and developed more frequent macroscopic adenomas (as well as one carcinoma). Our results are consistent with a model in which dysregulation of one pathway may result in adrenal hyperplasia, but accumulation of a second or multiple alterations is necessary for tumorigenesis. (Ant J Pathol 2012, 181:1017-1033; http://dx.doi.org/10.1016/j.ajpath.2012.05.026)
Resumo:
In the present study, mixed systems composed of SDS in the presence of neutral cyclodextrins were considered. Firstly, the effect of the CDs on the CMC of the surfactant was evaluated by CE experiments. Furthermore, a new CE approach based on electric current measurement was developed for the estimation of the stoichiometry as well as of the binding constants of SDS-CDs complexes. The results of these investigations were compared to those obtained with a different technique, electronic paramagnetic resonance (EPR). The obtained results suggested that methylated CDs, in particular (2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD), strongly affect the micellization of SDS in comparison to the other studied CDs. This effect also paralleled the chiral CD-MEKC performance, as indicated by the enantioresolution of (+/-)-Catechin, which was firstly selected as a model compound representative of important chiral phytomarkers. Then a CD-MEKC system, composed of sodium dodecyl sulfate as surfactant (90 mM) and hydroxypropyl-beta-cyclodextrin (25 mM) as chiral selector, under acidic conditions (25 mM borate – phosphate buffer, pH 2.5) was applied to study the thermal epimerisation of epi-structured catechins, (-)-Epicatechin and (-)-Epigallocatechin, to non epi-structured (-)-Catechin and (-)-Gallocatechin. The latter compounds, being non-native molecules, were for the first time regarded as useful phytomarkers of tea sample degradation. The proposed method was applied to the analysis of more than twenty tea samples of different geographical origins (China, Japan, Ceylon), having undergone different storage conditions and manufacturing processes.
Resumo:
Die Metalloproteasen Meprin α und β übernehmen Schlüsselfunktionen in vielen (patho-) physiologischenrnProzessen. So sind sie beteiligt an der Umstrukturierung der extrazellulären Matrix, an immunologischenrnReaktionen oder an entzündlichen Gewebserkrankungen. Die beiden Enzyme kommenrnhauptsächlich in den Bürstensaummembranen von Niere und Darm sowie in der Haut von Vertebratenrnvor. Für die Erforschung der biologischen Aktivität der Meprine wurde in dieser Arbeit der ModellorganismusrnDanio rerio verwendet, der vor allem durch die Möglichkeit der gentechnischen Manipulationrnprädestiniert ist. Im Fisch konnten drei homologe Enzyme (Meprin α1, α2 und β) nachgewiesenrnwerden. Während mRNA-Analysen eine nahezu ubiquitäre Verteilung der Meprine offenbarten,rnkonnte ich mittels spezifischer Antikörper die Expression auf Proteinebene nachweisen. WährendrnMeprin α1 und β verstärkt im Darmepithel und in der Epidermis lokalisiert sind, konnte Meprinrnα2 ausschließlich in der Lamina propria des Darms identifiziert werden.rnDer Hauptteil der vorliegenden Arbeit zielt auf die spezifische Reduzierung des Expressionslevels derrnMeprine in Embryonen des Zebrabärblings. Dies wurde durch die Mikroinjektion von sogenanntenrnMorpholinos in die Zygote erzielt. Morpholinos sind RNA-Moleküle, die spezifisch an die mRNA desrnZielproteins binden können und die Translation verhindern. Die auftretenden Effekte durch das Fehlenrnder Meprine lassen so Rückschlüsse auf ihre physiologische Funktion zu. Nach der Injektion vonrnMorpholinos gegen Meprin α1 zeigten sich lediglich leichte epidermale Deformationen. Bei Meprin βrnhingegen kam es zu einer massiven Fehlbildung von Organen im Rumpf- und Schwanzbereich. Diesesrnführte zu erheblichen Defekten; die Embryonen starben innerhalb der ersten 24 Stunden nach derrnBefruchtung. Demzufolge müssen Meprin α1 und Meprin β insbesondere an der Gewebsdifferenzierungrnbeteiligt sein. Dies korreliert mit verschiedenen Experimenten, u.a. an knockout Mäusen, ausrndenen hervorgeht, dass die Prozessierung und Aktivierung der Cytokine Interleukin-1β oder Interleukin-rn18 durch Meprin β erfolgen kann.rnDie Injektion von Meprin α2-Morpholinos erbrachte ein weiteres, eindrucksvolles Ergebnis: Das Blutgefäßsystemrnvon injizierten Embryonen war vollständig unterbrochen und es sammelten sich Erythrozytenrnim Bereich der Caudalvene an. Diese Phänotypen gleichen den knockdown-Experimenten mitrndem vascular endothelial growth factor VEGF-A, dem entscheidenden Wachstumsfaktor in der Angiogenesern(Blutgefäßbildung). Eine Inkubation des humanen VEGF-A mit (humanem) rekombinantemrnMeprin α bzw. β führte zu einer differenzierten Prozessierung des Moleküls. Diese Ergebnisse legenrnnahe, dass Meprin α pro-angiogenetisch wirkt, indem es VEGF-A prozessiert und damit die Gefäßbildungrnaktiviert. Aus den Daten dieser Arbeit wird die hohe Signifikanz der Meprine für die Proliferationrnund Differenzierung spezieller Gewebe deutlich, welche somit eine wichtige Grundlage für Studienrnan höheren Vertebraten darstellt.
Resumo:
The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.
Resumo:
The forces required for the detachment of ferrocene (Fc) from β-cyclodextrin (βCD) in a single host (βCD)–guest (Fc) complex were investigated using force spectroscopy under electrochemical conditions. The redox state of the guest Fc moiety as well as the structure of the supporting matrix was found to decisively affect the nanomechanical properties of the complex.
Resumo:
One of the earliest events induced by interleukin 2 (IL-2) is tyrosine phosphorylation of cellular proteins, including the IL-2 receptor beta chain (IL-2Rbeta). Simultaneous mutation of three tyrosines (Y338, Y392, and Y510) in the IL-2Rbeta cytoplasmic domain abrogated IL-2-induced proliferation, whereas mutation of only Y338 or of Y392 and Y510 inhibited proliferation only partially. While Y392 and Y510 were critical for IL-2-induced activation of signal transducers and activators of transcription (STAT proteins), Y338 was required for Shc-IL-2Rbeta association and for IL-2-induced tyrosine phosphorylation of Shc. Thus, activation of both Jak-STAT and Shc-coupled signaling pathways requires specific IL-2Rbeta tyrosines that together act in concert to mediate maximal proliferation. In COS-7 cells, overexpression of Jak1 augmented phosphorylation of Y338 as well as Y392 and Y510, suggesting that the role for this Jak kinase may extend beyond the Jak-STAT pathway.
Resumo:
To explore the possible involvement of STAT factors ("signal transducers and activators of transcription") in the interleukin 2 receptor (IL-2R) signaling cascade, murine HT-2 cells expressing chimeric receptors composed of the extracellular domain of the erythropoietin receptor fused to the cytoplasmic domains of the IL-2R beta or -gamma c chains were prepared. Erythropoietin or IL-2 activation of these cells resulted in rapid nuclear expression of a DNA-binding activity that reacted with select STAT response elements. Based on reactivity with specific anti-STAT antibodies, this DNA-binding activity was identified as a murine homologue of STAT-5. Induction of nuclear expression of this STAT-5-like factor was blocked by the addition of herbimycin A, a tyrosine kinase inhibitor, but not by rapamycin, an immunophilin-binding antagonist of IL-2-induced proliferation. The IL-2R beta chain appeared critical for IL-2-induced activation of STAT-5, since a mutant beta chain lacking all cytoplasmic tyrosine residues was incapable of inducing this DNA binding. In contrast, a gamma c mutant lacking all of its cytoplasmic tyrosine residues proved fully competent for the induction of STAT-5. Physical binding of STAT-5 to functionally important tyrosine residues within IL-2R beta was supported by the finding that phosphorylated, but not nonphosphorylated, peptides corresponding to sequences spanning Y392 and Y510 of the IL-2R beta tail specifically inhibited STAT-5 DNA binding.