969 resultados para 16S ribosomal RNA gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of molecular biology has had a dramatic impact on all aspects of biology, not least applied microbial ecology. Microbiological testing of water has traditionally depended largely on culture techniques. Growing understanding that only a small proportion of microbial species are culturable, and that many microorganisms may attain a viable but non-culturable state, has promoted the development of novel approaches to monitoring pathogens in the environment. This has been paralleled by an increased awareness of the surprising genetic diversity of natural microbial populations. By targeting gene sequences that are specific for particular microorganisms, for example genes that encode diagnostic enzymes, or species-specific domains of conserved genes such as 16S ribosomal RNA coding sequences (rrn genes), the problems of culture can be avoided. Technical developments, notably in the area of in vitro amplification of DNA using the polymerase chain reaction (PCR), now permit routine detection and identification of specific microorganisms, even when present in very low numbers. Although the techniques of molecular biology have provided some very powerful tools for environmental microbiology, it should not be forgotten that these have their own drawbacks and biases in sampling. For example, molecular techniques are dependent on efficient lysis and recovery of nucleic acids from both vegetative forms and spores of microbial species that may differ radically when growing in the laboratory compared with the natural environment. Furthermore, PCR amplification can introduce its own bias depending on the nature of the oligonucleotide primers utilised. However, despite these potential caveats, it seems likely that a molecular biological approach, particularly with its potential for automation, will provide the mainstay of diagnostic technology for the foreseeable future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monophyly of Diplura and its phylogenetic relationship with other hexapods are important for understanding the phylogeny of Hexapoda. The complete 18SrRNA gene and partial 28SrRNA gene (D3-D5 region) from 2 dipluran species (Campodeidae and Japygidae), 2 proturan species, 3 collembolan species, and 1 locust species were sequenced. Combining related sequences in GenBank, phylogenetic trees of Hexapoda were constructed by MP method using a crustacean Artemia salina as an outgroup. The results indicated that: (i) the integrated data of 18SrDNA and 28SrDNA could provide better phylogenetic information, which well supported the monophyly of Diplura; (ii) Diplura had a close phylogenetic relationship to Protura with high bootstrap support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sequenced partial mitochondrial 16S ribosomal DNA (16S rDNA) of 18 firefly species from Southwest of China. Combined with homologous sequences previously reported, phylogenetic trees including Japanese, Korean and Chinese species were reconstructed by

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyprinidae is the largest fish family in the world and contains about 210 genera and 2010 species. Appropriate DNA markers must be selected for the phylogenetic analyses of Cyprinidae. In present study, the 1st intron of the S7 ribosomal protein (r-protein) gene is first used to examine the relationships among cyprinid fishes. The length of the 1st intron obtained by PCR amplification ranges from 655 to 859 by in the 16 cyprinid species investigated, and is 602 by in Myxocyprinus asiaticus. Out of the alignment of 925 nucleotide sites obtained, the parsimony informative sites are 499 and occupy 54% of the total sites. The results indicate that the 1st intron sequences of the S7 r-protein gene in cyprinids are rich in informative sites and vary remarkably in sequence divergence from 2.3% between close species to 66.6% between distant species. The bootstrap values of the interior nodes in the NJ (neighbor-joining) and MP (most-parsimony) trees based on the present S7 r-protein gene data are higher than those based on cytochrome b and the d-loop region respectively. Therefore, the 1st intron sequences of the S7 r-protein gene in cyprinids are sensitive enough for phylogenetic analyses, and the 1st intron is an appropriate genetic marker for the phylogenetic reconstruction of the taxa in different cyprinid subfamilies. However, attempts to discuss whether the present S7 r-protein gene data can be applied to the phylogeny of the taxa at the level of the family or the higher categories in Cypriniformes need further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phylogenetic relationships and species identification of pufferfishes of the genus Takifugu were examined by use of randomly amplified polymorphic DNA (RAPD) and sequencing of the amplified partial mitochondrial 16S ribosomal RNA genes. Amplifications with 200 ten-base primers under predetermined optimal reaction conditions yielded 1962 reproducible amplified fragments ranging from 200 to 3000 bp. Genetic distances between 5 species of Takifugu and Lagocephalus spadiceus as the outgroup were calculated from the presence or absence of the amplified fragments. Approximately 572 bp of the 16S ribosonial RNA gene was amplified, using universal primers, and used to determine the genetic distance values. Topological phylogenic trees for the 5 species of Takifugu and outgroup were generated from neighbor-joining analysis based on the data set of RAPD analysis and sequences of mitochondrial 16S rDNA. The genetic distance between Takifugu rubripes and Takifugu pseudommus was almost the same as that between individuals within cacti species, but much smaller than that between T. rubripes, T. pseudommus, and the other species. The molecular data gathered from both analysis of mitochondria and nuclear DNA strongly indicated that T. rubripes and T. pseudommus should be regarded as the same species. A fragment of approximately 900 bp was amplified from the genome of all 26 T. pseudommus individuals examined and 4 individuals of intermediate varieties between T. rubripes and T. pseudommus. Of the 32 T. rubripes individuals, only 3 had the amplified fragment. These results suggest that this fragment may be useful in distinguishing between T. rubripes and T. pseudommus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the 16S mitochondrial partial gene sequences of 29 genera, containing 26 from Oedipodidae and one each from Tanaoceridae, Pyrgomorphidae and Tetrigidae (as outgroups), the homologus sequences were compared and phylogenetic analyses were performed. A phylogenetic tree was inferred by neighbor-joining (NJ). The results of sequences compared show that: (i) in a total of 574 bp of Oedipodidae, the number of substituted nucleotides was 265 bp and the average percentages of T, C, A and G were 38.3%, 11.4%, 31.8% and 18.5%, respectively, and the content of A+T (70.1%) was distinctly richer than that of C+G (29.9%); and (ii) the average nucleotide divergence of 16S rDNA sequences among genera of Oedipodidae were 9.0%, among families of Acridoidea were 17.0%, and between superfamilies (Tetrigoidea and Acridoidea) were 23.9%, respectively. The phylogenetic tree indicated: (i) the Oedipodidae was a monophyletic group, which suggested that the taxonomic status of this family was confirmed; (ii) the genus Heteropternis separated from the other Oedipodids first and had another unique sound-producing structure in morphology, which is the type-genus of subfamily Heteropterninae; and (iii) the relative intergeneric relationship within the same continent was closer than that of different continents, and between the Eurasian genera and the African genera, was closer than that between Eurasians and Americans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is an autosomal recessive monogenic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene with the ΔF508 mutation accounting for approximately 70% of all CF cases worldwide. This thesis investigates whether existing zinc finger nucleases designed in this lab and CRISPR/gRNAs designed in this thesis can mediate efficient homology-directed repair (HDR) with appropriate donor repair plasmids to correct CF-causing mutations in a CF cell line. Firstly, the most common mutation, ΔF508, was corrected using a pair of existing ZFNs, which cleave in intron 9, and the donor repair plasmid pITR-donor-XC, which contains the correct CTT sequence and two unique restriction sites. HDR was initially determined to be <1% but further analysis by next generation sequencing (NGS) revealed HDR occurred at a level of 2%. This relatively low level of repair was determined to be a consequence of distance from the cut site to the mutation and so rather than designing a new pair of ZFNs, the position of the existing intron 9 ZFNs was exploited and attempts made to correct >80% of CF-causing mutations. The ZFN cut site was used as the site for HDR of a mini-gene construct comprising exons 10-24 from CFTR cDNA (with appropriate splice acceptor and poly A sites) to allow production of full length corrected CFTR mRNA. Finally, the ability to cleave closer to the mutation and mediate repair of CFTR using the latest gene editing tool CRISPR/Cas9 was explored. Two CRISPR gRNAs were tested; CRISPR ex10 was shown to cleave at an efficiency of 15% and CRISPR in9 cleaved at 3%. Both CRISPR gRNAs mediated HDR with appropriate donor plasmids at a rate of ~1% as determined by NGS. This is the first evidence of CRISPR induced HDR in CF cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIa in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIa is a component of the initiation-competent RNA polymerase Iß complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIa functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ERI-1 und ihm homologe Proteine sind 3‘-5‘ Exoribonukleasen mit konservierten Funktionen in der Regulation von RNA Silencing sowie der Prozessierung ribosomaler RNA. Caenorhabditis elegans ERI-1 (Enhanced RNAi 1) enthält eine konservierte ERI-1_3’hExo_like EXOIII-Domäne, die siRNAs in vitro bindet und degradiert, und deren Inaktivierung eine RNAi-Hypersensitivität zur Folge hat. ERI-1 ist phylogenetisch konserviert, und homologe Proteine wurden Reiche-übergreifend in einer Vielzahl von Modellorganismen identifiziert. RNA-Silencing-reprimierende Eigenschaften dieser Proteine wurden in einigen Fällen charakterisiert. Zusätzlich wurde für eine Untergruppe ERI-1-homologer Proteine eine Funktion in der Biogenese der 5.8S ribosomalen RNA aufgezeigt: Katalyse des letzten Prozessierungsschritts während der Reifung des 5.8S rRNA 3‘-Endes. Diese Doppelfunktion ERI-1-homologer Proteine schlägt eine interessante Brücke zwischen evolutionär weit entfernten auf nicht-codierender RNA basierenden Mechanismen. In dieser Arbeit werden Ergebnisse präsentiert, die Charakteristika des pflanzlichen ERI-1-Homologs ERL1 in verschiedenen regulatorischen Zusammenhängen zum Gegenstand haben. ERL1 lokalisiert in Chloroplasten und zeigt keinerlei messbare Aktivität in Bezug auf die Regulierung von RNA Silencing. Im Gegensatz dazu konnte gezeigt werden, dass ERL1 eine wichtige Rolle während der Reifung der chloroplastischen 5S rRNA spielt. ERL1-supprimierende bzw. -überexprimierende transgene Pflanzen, zeigen unterschiedliche phänotypische Aberrationen. Diese beinhalten vielfarbige Blätter, reduziertes Wachstum und Fruchtbarkeit, sowie den Verlust Photosynthese-kompetenter Chloroplasten in gebleichten Sektoren. Diese Defekte werden dadurch verursacht, dass die Plastid-Entwicklung in einem frühen Stadium blockiert wird. Dies führt zu defekten Plastiden, die keine kanonischen internen Strukturen, einschließlich Grana, bilden können. Die gestörte Plastid-Entwicklung ist ein Resultat fehlerhafter Prozessierung ribosomaler RNAs und dem daraus folgenden Verlust plastidärer Transkription und Translation. Wenn ERL1 runterreguliert oder überexprimiert ist, akkumulieren 3‘-elongierte 5S rRNA-Moleküle, was Störungen in der Produktion der Ribosomen hervorruft. Die Reifung der 5S rRNA ist leit langem als Prozess bekannt, der viele aufeinander folgende endonukleolytische Spaltungen sowie exonukleolytische Rezessionen beinhaltet. Bis dato war die Gesamtheit der Exonukleasen während dieser Reifung jedoch nur lückenhaft bekannt. Die Ergebnisse dieser Arbeit zeigen, dass ERL1 eine wichtige Rolle in der Plastid-Entwicklung spielt, indem ERL1 den finalen Reifungsschritt des 5S rRNA 3‘-Endes katalysiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The characterization of microbial communities infecting the endodontic system in each clinical condition may help on the establishment of a correct prognosis and distinct strategies of treatment. The purpose of this study was to determine the bacterial diversity in primary endodontic infections by 16S ribosomal-RNA (rRNA) sequence analysis. Methods: Samples from root canals of untreated asymptomatic teeth (n = 12) exhibiting periapical lesions were obtained, 165 rRNA bacterial genomic libraries were constructed and sequenced, and bacterial diversity was estimated. Results: A total of 489 clones were analyzed (mean, 40.7 +/- 8.0 clones per sample). Seventy phylotypes were identified of which six were novel phylotypes belonging to the family Ruminococcaceae. The mean number of taxa per canal was 10.0, ranging from 3 to 21 per sample; 65.7% of the cloned sequences represented phylotypes for which no cultivated isolates have been reported. The most prevalent taxa were Atopobium rimae (50.0%), Dialister invisus, Pre-votella oris, Pseudoramibacter alactolyticus, and Tannerella forsythia (33.3%). Conclusions: Although several key species predominate in endodontic samples of asymptomatic cases with periapical lesions, the primary endodontic infection is characterized by a wide bacterial diversity, which is mostly represented by members of the phylum Firmicutes belonging to the class Clostridia followed by the phylum Bacteroidetes. (J Ended 2011;37:922-926)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phylogeny is one of the main activities of the modern taxonomists and a way to reconstruct the history of the life through comparative analysis of these sequences stored in their genomes aimed find any justification for the origin or evolution of them. Among the sequences with a high level of conservation are the genes of repair because it is important for the conservation and maintenance of genetic stability. Hence, variations in repair genes, as the genes of the nucleotide excision repair (NER), may indicate a possible gene transfer between species. This study aimed to examine the evolutionary history of the components of the NER. For this, sequences of UVRA, UVRB, UVRC and XPB were obtained from GenBank by Blast-p, considering 10-15 as cutoff to create a database. Phylogenetic studies were done using algorithms in PAUP programs, BAYES and PHYLIP package. Phylogenetic trees were build with protein sequences and with sequences of 16S ribosomal RNA for comparative analysis by the methods of parsimony, likelihood and Bayesian. The XPB tree shows that archaeal´s XPB helicases are similar to eukaryotic helicases. According to this data, we infer that the eukaryote nucleotide excision repair system had appeared in Archaea. At UVRA, UVRB and UVRC trees was found a monophyletic group formed by three species of epsilonproteobacterias class, three species of mollicutes class and archaeabacterias of Methanobacteria and Methanococci classes. This information is supported by a tree obtained with the proteins, UVRA, UVRB and UVRC concatenated. Thus, although there are arguments in the literature defending the horizontal transfer of the system uvrABC of bacteria to archaeabacterias, the analysis made in this study suggests that occurred a vertical transfer, from archaeabacteria, of both the NER genes: uvrABC and XPs. According the parsimony, this is the best way because of the occurrence of monophyletic groups, the time of divergence of classes and number of archaeabacterias species with uvrABC system