773 resultados para 100600 COMPUTER HARDWARE
Resumo:
The UQ RoboRoos have been developed to participate in the RoboCup robot soccer small size league over several years. RoboCup 2001 saw a focus on the mechanical design of the RoboRoos, with the introduction of an omni-directional drive system and a high power kicker. The change in mechanical design had implications for the rest of the system particularly navigation and multi-robot planning. In addition, the overhead vision system was upgraded to improve reliability and robustness.
Resumo:
The following topics were dealt with: semiconductor growth (MBE, PECVD, MOCVD, MOVPE) and characterizations; high-electron mobility transistors (HEMTs); microcavity organic light emitting diode (MOLED); semiconductor superlattices; photodiode arrays; MEMS structures; lithography;semiconductor lasers; semiconductor optical amplifiers; surface treatment and annealing
Resumo:
The potential benefits of implementing Component-Based Development (CBD) methodologies in a globally distributed environment are many. Lessons from the aeronautics, automotive, electronics and computer hardware industries, in which Component-Based (CB) architectures have been successfully employed for setting up globally distributed design and production activities, have consistently shown that firms have managed to increase the rate of reused components and sub-assemblies, and to speed up the design and production process of new products.
Resumo:
Memory (cache, DRAM, and disk) is in charge of providing data and instructions to a computer's processor. In order to maximize performance, the speeds of the memory and the processor should be equal. However, using memory that always match the speed of the processor is prohibitively expensive. Computer hardware designers have managed to drastically lower the cost of the system with the use of memory caches by sacrificing some performance. A cache is a small piece of fast memory that stores popular data so it can be accessed faster. Modern computers have evolved into a hierarchy of caches, where a memory level is the cache for a larger and slower memory level immediately below it. Thus, by using caches, manufacturers are able to store terabytes of data at the cost of cheapest memory while achieving speeds close to the speed of the fastest one.^ The most important decision about managing a cache is what data to store in it. Failing to make good decisions can lead to performance overheads and over-provisioning. Surprisingly, caches choose data to store based on policies that have not changed in principle for decades. However, computing paradigms have changed radically leading to two noticeably different trends. First, caches are now consolidated across hundreds to even thousands of processes. And second, caching is being employed at new levels of the storage hierarchy due to the availability of high-performance flash-based persistent media. This brings four problems. First, as the workloads sharing a cache increase, it is more likely that they contain duplicated data. Second, consolidation creates contention for caches, and if not managed carefully, it translates to wasted space and sub-optimal performance. Third, as contented caches are shared by more workloads, administrators need to carefully estimate specific per-workload requirements across the entire memory hierarchy in order to meet per-workload performance goals. And finally, current cache write policies are unable to simultaneously provide performance and consistency guarantees for the new levels of the storage hierarchy.^ We addressed these problems by modeling their impact and by proposing solutions for each of them. First, we measured and modeled the amount of duplication at the buffer cache level and contention in real production systems. Second, we created a unified model of workload cache usage under contention to be used by administrators for provisioning, or by process schedulers to decide what processes to run together. Third, we proposed methods for removing cache duplication and to eliminate wasted space because of contention for space. And finally, we proposed a technique to improve the consistency guarantees of write-back caches while preserving their performance benefits.^
Resumo:
Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.
Resumo:
This work presents the modeling and FPGA implementation of digital TIADC mismatches compensation systems. The development of the whole work follows a top-down methodology. Following this methodology was developed a two channel TIADC behavior modeling and their respective offset, gain and clock skew mismatches on Simulink. In addition was developed digital mismatch compensation system behavior modeling. For clock skew mismatch compensation fractional delay filters were used, more specifically, the efficient Farrow struct. The definition of wich filter design methodology would be used, and wich Farrow structure, required the study of various design methods presented in literature. The digital compensation systems models were converted to VHDL, for FPGA implementation and validation. These system validation was carried out using the test methodology FPGA In Loop . The results obtained with TIADC mismatch compensators show the high performance gain provided by these structures. Beyond this result, these work illustrates the potential of design, implementation and FPGA test methodologies.
Resumo:
The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.
Resumo:
Brain-Computer Interfaces are usually tackled from a medical point of view, correlating observed phenomena to physical facts known about the brain. Existing methods of classification lie in the application of deterministic algorithms and depend on certain degree of knowledge about the underlying phenomena so as to process data. In this demo, different architectures for an evolvable hardware classifier implemented on an FPGA are proposed, in line with the objective of generalizing evolutionary algorithms regardless of the application.
Resumo:
Illustrations, p. 30-52, numbered as leaves.