897 resultados para 0299 Other Physical Sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom, and irradiated with a 12 field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilised in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this poster outlines the steps taken to model a 4 mm conical collimator (BrainLab, Germany) on a Novalis Tx linear accelerator (Varian, Palo Alto, USA) capable of producing a 6MV photon beam for treatment of Stereotactic Radiosurgery (SRS) patients. The verification of this model was performed by measurements in liquid water and in virtual water. The measurements involved scanning depth dose and profiles in a water tank plus measurement of output factors in virtual water using Gafchromic® EBT3 film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the interplay effects for Enhanced Dynamic Wedge (EDW) treatments are experimentally investigated. Single and multiple field EDW plans for different wedge angles were delivered to a phantom and detector on a moving platform, with various periods, amplitudes for parallel and perpendicular motions. A four field 4D CT planned lung EDW treatment was delivered to a dummy tumor over four fractions. For the single field parallel case the amplitude and the period of motion both affect the interplay resulting in the appearance of a step function and penumbral cut off with the discrepancy worst where collimator-tumor speed is similar. For perpendicular motion the amplitude of tumor motion is the only dominant factor. For large wedge angle the dose discrepancy is more pronounced compared to the small wedge angle for the same field size and amplitude-period values. For a small field size i.e. 5 × 5 cm2 the loss of wedged distribution was observed for both 60º and 15º wedge angles for of parallel and perpendicular motions. Film results from 4D CT planned delivery displayed a mix of over and under dosages over 4 fractions, with the gamma pass rate of 40% for the averaged film image at 3%/1 mm DTA (Distance to Agreement). Amplitude and period of the tumor motion both affect the interplay for single and multi-field EDW treatments and for a limited (4 or 5) fraction delivery there is a possibility of non-averaging of the EDW interplay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim A recent Monte Carlo based study has shown that it is possible to design a diode that measures small field output factors equivalent to that in water. This is accomplished by placing an appropriate sized air gap above the silicon chip (1) with experimental results subsequently confirming that a particular Monte Carlo design was accurate (2). The aim of this work was to test if a new correction-less diode could be designed using an entirely experimental methodology. Method: All measurements were performed on a Varian iX at a depth of 5 cm, SSD of 95 cm and field sizes of 5, 6, 8, 10, 20 and 30 mm. Firstly, the experimental transfer of kq,clin,kq,msr from a commonly used diode detector (IBA, stereotactic field diode (SFD)) to another diode detector (Sun Nuclear, unshielded diode, (EDGEe)) was tested. These results were compared to Monte Carlo calculated values of the EDGEe. Secondly, the air gap above the EDGEe silicon chip was optimised empirically. Nine different air gap “tops” were placed above the EDGEe (air depth = 0.3, 0.6, 0.9 mm; air width = 3.06, 4.59, 6.13 mm). The sensitivity of the EDGEe was plotted as a function of air gap thickness for the field sizes measured. Results: The transfer of kq,clin,kq,msr from the SFD to the EDGEe was correct to within the simulation and measurement uncertainties. The EDGEe detector can be made “correction-less” for field sizes of 5 and 6 mm, but was ∼2% from being “correction-less” at field sizes of 8 and 10 mm. Conclusion Different materials will perturb small fields in different ways. A detector is only “correction-less” if all these perturbations happen to cancel out. Designing a “correction-less” diode is a complicated process, thus it is reasonable to expect that Monte Carlo simulations should play an important role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an experimental and numerical study examining the dynamics of a gravity-driven contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and wetting properties. The dynamics of the contact line is studied and results are compared to previous studies of inclined plane experiments in order to understand the influence substrate curvature plays on the fingering pattern. A lubrication model is derived for the film height in the limit that ε = H/R≪1, where H is the upstream film thickness, and in terms of a Bond number ρgR3/(γH), and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature controls the capillary ridge height of the traveling wave and the range of unstable wavelength when ε = O(10-1), whereas the shape and stability of the contact line converge to the behavior one observes on a vertical plane when ε ≤ O(10-2). The most unstable wave mode, cutoff wave mode for neutral stability, and maximum growth rate scale as 0.45 where = ρgR2/γ ≥ 1.3, and the contact line is unstable to fingering when ≥ 0.56. Using the experimental data to extrapolate outside the range of validity of the thin film model, we estimate the contact line is stable when <0.56. Agreement is excellent between the model and the experimental data for the wave number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the contact line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Science and technology are promoted as major contributors to national development. Consequently, improved science education has been placed high on the agenda of tasks to be tackled in many developing countries, although progress has often been limited. In fact there have been claims that the enormous investment in teaching science in developing countries has basically failed, with many reports of how efforts to teach science in developing countries often result in rote learning of strange concepts, mere copying of factual information, and a general lack of understanding on the part of local students. These generalisations can be applied to science education in Fiji. Muralidhar (1989) has described a situation in which upper primary and middle school students in Fiji were given little opportunity to engage in practical work; an extremely didactic form of teacher exposition was the predominant method of instruction during science lessons. He concluded that amongst other things, teachers' limited understanding, particularly of aspects of physical science, resulted in their rigid adherence to the text book or the omission of certain activities or topics. Although many of the problems associated with science education in developing countries have been documented, few attempts have been made to understand how non-Western students might better learn science. This study addresses the issue of Fiji pre-service primary teachers' understanding of a key aspect of physical science, namely, matter and how it changes, and their responses to learning experiences based on a constructivist epistemology. Initial interviews were used to probe pre-service primary teachers' understanding of this domain of science. The data were analysed to identify students' alternative and scientific conceptions. These conceptions were then used to construct Concept Profile Inventories (CPI) which allowed for qualitative comparison of the concepts of the two ethnic groups who took part in the study. This phase of the study also provided some insight into the interaction of scientific information and traditional beliefs in non-Western societies. A quantitative comparison of the groups' conceptions was conducted using a Science Concept Survey instrument developed from the CPis. These data provided considerable insight into the aspects of matter where the pre-service teachers' understanding was particularly weak. On the basis of these preliminary findings, a six-week teaching program aimed at improving the students' understanding of matter was implemented in an experimental design with a group of students. The intervention involved elements of pedagogy such as the use of analogies and concept maps which were novel to most of those who took part. At the conclusion of the teaching programme, the learning outcomes of the experimental group were compared with those of a control group taught in a more traditional manner. These outcomes were assessed quantitatively by means of pre- and post-tests and a delayed post-test, and qualitatively using an interview protocol. The students' views on the various teaching strategies used with the experimental group were also sought. The findings indicate that in the domain of matter little variation exists in the alternative conceptions held by Fijian and Indian students suggesting that cultural influences may be minimal in their construction. Furthermore, the teaching strategies implemented with the experimental group of students, although largely derived from Western research, showed considerable promise in the context of Fiji, where they appeared to be effective in improving the understanding of students from different cultural backgrounds. These outcomes may be of significance to those involved in teacher education and curriculum development in other developing countries.