80 resultados para , Struts
Resumo:
Coronary late stent thrombosis, a rare but devastating complication, remains an important concern in particular with the increasing use of drug-eluting stents. Notably, pathological studies have indicated that the proportion of uncovered coronary stent struts represents the best morphometric predictor of late stent thrombosis. Intracoronary optical frequency domain imaging (OFDI), a novel second-generation optical coherence tomography (OCT)-derived imaging method, may allow rapid imaging for the detection of coronary stent strut coverage with a markedly higher precision when compared with intravascular ultrasound, due to a microscopic resolution (axial approximately 10-20 microm), and at a substantially increased speed of image acquisition when compared with first-generation time-domain OCT. However, a histological validation of coronary OFDI for the evaluation of stent strut coverage in vivo is urgently needed. Hence, the present study was designed to evaluate the capacity of coronary OFDI by electron (SEM) and light microscopy (LM) analysis to detect and evaluate stent strut coverage in a porcine model.
Resumo:
Aims To compare the tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent (ZES) vs. a fluoropolymer-coated everolimus-eluting stent (EES) at 13 months, using optical coherence tomography (OCT) in an ‘all-comers' population of patients, in order to clarify the mechanism of eventual differences in the biocompatibility and thrombogenicity of the devices. Methods and results Patients randomized to angiographic follow-up in the RESOLUTE All Comers trial (NCT00617084) at pre-specified OCT sites underwent OCT follow-up at 13 months. Tissue coverage and apposition were assessed strut by strut, and the results in both treatment groups were compared using multilevel logistic or linear regression, as appropriate, with clustering at three different levels: patient, lesion, and stent. Fifty-eight patients (30 ZES and 28 EES), 72 lesions, 107 stents, and 23 197 struts were analysed. Eight hundred and eighty-seven and 654 uncovered struts (7.4 and 5.8%, P= 0.378), and 216 and 161 malapposed struts (1.8 and 1.4%, P= 0.569) were found in the ZES and EES groups, respectively. The mean thickness of coverage was 116 ± 99 µm in ZES and 142 ± 113 µm in EES (P= 0.466). No differences in per cent neointimal volume obstruction (12.5 ± 7.9 vs. 15.0 ± 10.7%) or other areas–volumetric parameters were found between ZES and EES, respectively. Conclusion No significant differences in tissue coverage, malapposition, or lumen/stent areas and volumes were detected by OCT between the hydrophilic polymer-coated ZES and the fluoropolymer-coated EES at 13-month follow-up.
Resumo:
To compare the intravascular ultrasound virtual histology (IVUS-VH) appearance of the polymeric struts of the first (Revision 1.0) and the second (Revision 1.1) generation bioresorbable vascular scaffold (BVS).
Resumo:
BACKGROUND AND PURPOSE: Currently, several new stent retriever devices for acute stroke treatment are under development and early clinical evaluation. Preclinical testing under standardized conditions is an important first step to evaluate the technical performance and potential of these devices. The aim of this study was to evaluate the immediate recanalization effect, recanalization efficacy, thrombus-device interaction, and safety of a new stent retriever intended for thrombectomy in patients with acute stroke. MATERIAL AND METHODS: The pREset thrombectomy device (4 × 20 mm) was evaluated in 16 vessel occlusions in an established swine model. Radiopaque thrombi (10-mm length) were used for visualization of thrombus-device interaction during application and retrieval. Flow-restoration effect immediately after deployment and after 5-minute embedding time before retrieval, recanalization rate after retrieval, thromboembolic events, and complications were assessed. High-resolution FPCT was performed to illustrate thrombus-device interaction during the embedding time. RESULTS: Immediate flow restoration was achieved in 75% of occlusions. An increase or stable percentage of recanalizations during embedding time before retrieval was seen in 56.3%; a decrease, in 12.5%; reocclusion of a previously recanalized vessel, in 18.8%; and no recanalization effect at all, in 12.5%. Complete recanalization (TICI 3) after retrieval was achieved in 93.8%; partial recanalization (TICI 2b), in 6.2%. No distal thromboembolic events were observed. High-resolution FPCT illustrated entrapment of the thrombus between the stent struts and compression against the contralateral vessel wall, leading to partial flow restoration. During retrieval, the thrombus was retained in a straight position within the stent struts. CONCLUSIONS: In this experimental study, the pREset thrombus retriever showed a high recanalization rate in vivo. High-resolution FPCT allows detailed illustration of the thrombus-device interaction during embedding time and is advocated as an add-on tool to the animal model used in this study.
Resumo:
INTRODUCTION: Osteoporosis is not only responsible for an increased number of metaphyseal and spinal fractures but it also complicates their treatment. To prevent the initial loosening, we developed a new implant with an enlarged implant/bone interface based on the concept of perforated, hollow cylinders. We evaluated whether osseointegration of a hollow cylinder based implant takes place in normal or osteoporotic bone of sheep under functional loading conditions during anterior stabilization of the lumbar spine. MATERIALS AND METHODS: Osseointegration of the cylinders and status of the fused segments (ventral corpectomy, replacement with iliac strut, and fixation with testing implant) were investigated in six osteoporotic (age 6.9 +/- 0.8 years, mean body weight 61.1 +/- 5.2 kg) and seven control sheep (age 6.1 +/- 0.2 years, mean body weight 64.9 +/- 5.7 kg). Osteoporosis was introduced using a combination protocol of ovariectomy, high-dose prednisone, calcium and phosphor reduced diet and movement restriction. Osseointegration was quantified using fluorescence and conventional histology; fusion status was determined using biomechanical testing of the stabilized segment in a six-degree-of-freedom loading device as well as with radiological and histological staging. RESULTS: Intact bone trabeculae were found in 70% of all perforations without differences between the two groups (P = 0.26). Inside the cylinders, bone volume/total volume was significantly higher than in the control vertebra (50 +/- 16 vs. 28 +/- 13%) of the same animal (P<0.01), but significantly less (P<0.01) than in the near surrounding (60 +/- 21%). After biomechanical testing as described in Sect. "Materials and methods", seven spines (three healthy and four osteoporotic) were classified as completely fused and six (four healthy and two osteoporotic) as not fused after a 4-month observation time. All endplates were bridged with intact trabeculae in the histological slices. CONCLUSIONS: The high number of perforations, filled with intact trabeculae, indicates an adequate fixation; bridging trabeculae between adjacent endplates and tricortical iliac struts in all vertebrae indicates that the anchorage is adequate to promote fusion in this animal model, even in the osteoporotic sheep.
Resumo:
BACKGROUND: Coronary stents improve immediate and late results of balloon angioplasty by tacking up dissections and preventing wall recoil. These goals are achieved within weeks after angioplasty, but with current technology stents permanently remain in the artery, with many limitations including the need for long-term antiplatelet treatment to avoid thrombosis. We report a prospective multicentre clinical trial of coronary implantations of absorbable magnesium stents. METHODS: We enrolled 63 patients (44 men; mean age 61.3 [SD 9.5 years]) in eight centres with single de novo lesions in a native coronary artery in a multicentre, non-randomised prospective study. Follow-up included coronary angiography and intravascular ultrasound at 4 months and clinical assessment at 6 months and 12 months. The primary endpoint was cardiac death, non-fatal myocardial infarction, or clinically driven target lesion revascularisation at 4 months FINDINGS: 71 stents, 10-15 mm in length and 3.0-3.5 mm in diameter, were successfully implanted after pre-dilatation in 63 patients. Diameter stenosis was reduced from 61.5 (SD 13.1%) to 12.6 (5.6%) with an acute gain of 1.41 mm (0.46 mm) and in-stent late loss of 1.08 mm (0.49 mm). The ischaemia-driven target lesion revascularisation rate was 23.8% after 4 months, and the overall target lesion revascularisation rate was 45% after 1 year. No myocardial infarction, subacute or late thrombosis, or death occurred. Angiography at 4 months showed an increased diameter stenosis of 48.4 (17.0%). After serial intravascular ultrasound examinations, only small remnants of the original struts were visible, well embedded into the intima. Neointimal growth and negative remodelling were the main operating mechanisms of restenosis. INTERPRETATION: This study shows that biodegradable magnesium stents can achieve an immediate angiographic result similar to the result of other metal stents and can be safely degraded after 4 months. Modifications of stent characteristics with prolonged degradation and drug elution are currently in development.
Resumo:
BACKGROUND: Different stents in infrainguinal arteries have recently been associated with stent fractures and unfavorable clinical outcome, although data is limited regarding fractures of the Xpert selfexpanding nitinol stent. Thus, purpose of the present investigation was to evaluate its incidence and clinical implications in lower limb arteries. PATIENTS AND METHODS: Fifty-three consecutive patients (53 limbs) with peripheral arterial disease underwent secondary Xpert stent implantation due to suboptimal primary balloon angioplasty (PTA). Median age was 76 years. Stent fractures were evaluated by plain X-ray at median follow-up of 16 months. Stent patency was assessed by duplex ultrasound and sustained clinical improvement was defined as improvement of the ABI of > or = 0.10 together with improvement of at least one Rutherford class above the baseline finding throughout follow-up. RESULTS: Median length of femoropopliteal and infrapopliteal lesion was 3.0 and 2.3 cm, respectively. Sixtyfive stents were implanted in 43 limbs with femoropopliteal and 10 stents in 10 limbs with infrapopliteal lesion, respectively. Stent fractures occurred in 3 of 43 limbs (7.0%) of patients with femoropopliteal lesion with stent-based fracture rate of 4.6%. All fractured stents showed multiple struts fractures and occurred in the distal and middle superficial femoral artery. No stent fracture was observed in infrapopliteal lesions. The fractured stents were not associated with any clinical deterioration. Sustained clinical improvement was 71.0% and 54.6% for femoropopliteal and infrapopliteal lesions, respectively. Stent patency assessed by duplex was 65.2 and 63.9% for femoropopliteal and infrapopliteal lesions, respectively. CONCLUSIONS: Fractures of the Xpert stent were seldom and not associated with unfavorable clinical outcome at midterm follow-up.
Resumo:
OBJECTIVES The purpose of this study was to assess the occurrence, predictors, and mechanisms of optical coherence tomography (OCT)-detected coronary evaginations following drug-eluting stent (DES) implantation. BACKGROUND Angiographic ectasias and aneurysms in stented segments have been associated with a risk of late stent thrombosis. Using OCT, some stented segments show coronary evaginations reminiscent of ectasias. METHODS Evaginations were defined as outward bulges in the luminal contour between struts. They were considered major evaginations (MEs) when extending ≥3 mm along the vessel length, with a depth ≥10% of the stent diameter. A total of 228 patients who had sirolimus (SES)-, paclitaxel-, biolimus-, everolimus (EES)-, or zotarolimus (ZES)-eluting stents implanted in 254 lesions, were analysed after 1, 2, or 5 years; and serial assessment using OCT and intravascular ultrasound (IVUS) was performed post-intervention and after 1 year in 42 patients. RESULTS Major evaginations occurred frequently at all time points in SES (∼26%) and were rarely seen in EES (3%) and ZES (2%, P = 0.003). Sirolimus-eluting stent implantation was the strongest independent predictor of ME [adjusted OR (95% CI) 9.1 (1.1-77.4), P = 0.008]. Malapposed and uncovered struts were more common in lesions with vs. without ME (77 vs. 25%, P < 0.001 and 95 vs. 20%, P < 0.001, respectively) as was thrombus [49 vs. 14%, OR 7.3 (95% CI: 1.7-31.2), P = 0.007]. Post-intervention intra-stent dissection and protrusion of the vessel wall into the lumen were associated with an increased risk of evagination at follow-up [OR (95% CI): 2.9 (1.8-4.9), P < 0.001 and 3.3 (1.6-6.9), P = 0.001, respectively]. In paired IVUS analyses, lesions with ME showed a larger increase in the external elastic membrane area (20% area change) compared with lesions without ME (5% area change, P < 0.001). CONCLUSION Optical coherence tomography-detected MEs are a specific morphological footprint of early-generation SES and are nearly absent in newer-generation ZES and EES. Evaginations appear to be related to vessel injury at baseline; are associated with positive vessel remodelling; and correlate with uncoverage, malapposition, and thrombus at follow-up.
Resumo:
Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
OBJECTIVE to compare the vascular healing process between the sirolimus-eluting NEVO and the everolimus-eluting Xience stent by optical coherence tomography (OCT) at 1-year follow-up. BACKGROUND Presence of durable polymer on a drug-eluting metallic stent may be the basis of an inflammatory reaction with abnormal healing response. The NEVO stent, having a bioresorbable polymer eluted by reservoir technology, may overcome this problem. METHODS All consecutive patients, who received NEVO or Xience stent implantation between September 2010 and October 2010 in our institution, were included. Vascular healing was assessed at 1-year as percentage of uncovered struts, neointimal thickness (NIT), in-stent/stent area obstruction and pattern of neointima. RESULTS A total 47 patients (2:1 randomization, n = 32 NEVO, n = 15 Xience) were included. Eighteen patients underwent angiographic follow-up (eight patients with nine lesions for NEVO vs. 10 patients with 11 lesions for Xience). The angiographic late loss was numerically higher but not statistically different in NEVO compared with Xience treated lesions (0.38 ± 0.47 mm vs. 0.18 ± 0.27 mm; P = 0.171). OCT analysis of 4,912 struts demonstrated similar rates of uncovered struts (0.5 vs. 0.7%, P = 0.462), higher mean NIT (177.76 ± 87.76 µm vs. 132.22 ± 30.91 µm; P = 0.170) and in stent/stent area obstruction (23.02 ± 14.74% vs. 14.17 ± 5.94%, P = 0.120) in the NEVO as compared with Xience. CONCLUSION The NEVO stent with a reservoir technology seems to exhibit more neointimal proliferation as compared to Xience stent. The findings of our study, which currently represent the unique data existing on this reservoir technology, would need to be confirmed in a large population.
Resumo:
OBJECTIVES: This study sought to assess the vascular response of overlapping Absorb stents compared with overlapping newer-generation everolimus-eluting metallic platform stents (Xience V [XV]) in a porcine coronary artery model. BACKGROUND: The everolimus-eluting bioresorbable vascular scaffold (Absorb) is a novel approach to treating coronary lesions. A persistent inflammatory response, fibrin deposition, and delayed endothelialization have been reported with overlapping first-generation drug-eluting stents. METHODS: Forty-one overlapping Absorb and overlapping Xience V (XV) devices (3.0 × 12 mm) were implanted in the main coronary arteries of 17 nonatherosclerotic pigs with 10% overstretch. Implanted coronary arteries were evaluated by optical coherence tomography (OCT) at 28 days (Absorb n = 11, XV n = 7) and 90 days (Absorb n = 11, XV n = 8), with immediate histological evaluation following euthanasia at the same time points. One animal from each time point was evaluated with scanning electron microscopy alone. A total of 1,407 cross sections were analyzed by OCT and 148 cross sections analyzed histologically. RESULTS: At 28 days in the overlap, OCT analyses indicated 80.1% of Absorb struts and 99.4% of XV struts to be covered (p < 0.0001), corresponding to histological observations of struts with cellular coverage of 75.4% and 99.6%, respectively (p < 0.001). Uncovered struts were almost exclusively related to the presence of "stacked" Absorb struts, that is, with a direct overlay configuration. At 90 days, overlapping Absorb and overlapping XV struts demonstrated >99% strut coverage by OCT and histology, with no evidence of a significant inflammatory process, and comparable % volume obstructions. CONCLUSIONS: In porcine coronary arteries implanted with overlapping Absorb or overlapping XV struts, strut coverage is delayed at 28 days in overlapping Absorb, dependent on the overlay configuration of the thicker Absorb struts. At 90 days, both overlapping Absorb and overlapping XV have comparable strut coverage. The implications of increased strut thickness may have important clinical and design considerations for bioresorbable platforms.
Resumo:
BACKGROUND Pathology studies have shown delayed arterial healing in culprit lesions of patients with acute coronary syndrome (ACS) compared with stable coronary artery disease (CAD) after placement of drug-eluting stents (DES). It is unknown whether similar differences exist in-vivo during long-term follow-up. Using optical coherence tomography (OCT), we assessed differences in arterial healing between patients with ACS and stable CAD five years after DES implantation. METHODS AND RESULTS A total of 88 patients comprised of 53 ACS lesions with 7864 struts and 35 stable lesions with 5298 struts were suitable for final OCT analysis five years after DES implantation. The analytical approach was based on a hierarchical Bayesian random-effects model. OCT endpoints were strut coverage, malapposition, protrusion, evaginations and cluster formation. Uncovered (1.7% vs. 0.7%, adjusted p=0.041) or protruding struts (0.50% vs. 0.13%, adjusted p=0.038) were more frequent among ACS compared with stable CAD lesions. A similar trend was observed for malapposed struts (1.33% vs. 0.45%, adj. p=0.072). Clusters of uncovered or malapposed/protruding struts were present in 34.0% of ACS and 14.1% of stable patients (adj. p=0.041). Coronary evaginations were more frequent in patients with ST-elevation myocardial infarction compared with stable CAD patients (0.16 vs. 0.13 per cross section, p=0.027). CONCLUSION Uncovered, malapposed, and protruding stent struts as well as clusters of delayed healing may be more frequent in culprit lesions of ACS compared with stable CAD patients late after DES implantation. Our observational findings suggest a differential healing response attributable to lesion characteristics of patients with ACS compared with stable CAD in-vivo.
Resumo:
OBJECTIVES This study sought to describe the frequency and clinical impact of acute scaffold disruption and late strut discontinuity of the second-generation Absorb bioresorbable polymeric vascular scaffolds (Absorb BVS, Abbott Vascular, Santa Clara, California) in the ABSORB (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions) cohort B study by optical coherence tomography (OCT) post-procedure and at 6, 12, 24, and 36 months. BACKGROUND Fully bioresorbable scaffolds are a novel approach to treatment for coronary narrowing that provides transient vessel support with drug delivery capability without the long-term limitations of metallic drug-eluting stents. However, a potential drawback of the bioresorbable scaffold is the potential for disruption of the strut network when overexpanded. Conversely, the structural discontinuity of the polymeric struts at a late stage is a biologically programmed fate of the scaffold during the course of bioresorption. METHODS The ABSORB cohort B trial is a multicenter single-arm trial assessing the safety and performance of the Absorb BVS in the treatment of 101 patients with de novo native coronary artery lesions. The current analysis included 51 patients with 143 OCT pullbacks who underwent OCT at baseline and follow-up. The presence of acute disruption or late discontinuities was diagnosed by the presence on OCT of stacked, overhung struts or isolated intraluminal struts disconnected from the expected circularity of the device. RESULTS Of 51 patients with OCT imaging post-procedure, acute scaffold disruption was observed in 2 patients (3.9%), which could be related to overexpansion of the scaffold at the time of implantation. One patient had a target lesion revascularization that was presumably related to the disruption. Of 49 patients without acute disruption, late discontinuities were observed in 21 patients. There were no major adverse cardiac events associated with this finding except for 1 patient who had a non-ischemia-driven target lesion revascularization. CONCLUSIONS Acute scaffold disruption is a rare iatrogenic phenomenon that has been anecdotally associated with anginal symptoms, whereas late strut discontinuity is observed in approximately 40% of patients and could be viewed as a serendipitous OCT finding of a normal bioresorption process without clinical implications. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856).
Resumo:
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.