998 resultados para (Bi,Pb)-2212
Resumo:
Superconducting BSCCO samples made by melt-texturing process were prepared with the addition of calcium zirconate and calcium silicate nanoparticles. Bi:2212 melt-textured composites prepared with I wt.% of either addition showed different behavior for the critical current density as a function of the applied field, indicating that for each additional compound the improvement can be associated to different enhancement mechanisms, such as the creation of pinning centers and the increase on the connectivity of the grains. The estimated pinning forces indicated higher values for the calcium compound containing samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A bifilar Bi-2212 bulk coil with parallel shunt resistor was tested under fault current condition using a 3 MVA single-phase transformer in a 220 V-60 Hz line achieving fault current peak of 8 kA. The fault current tests are performed from steady state peak current of 200 A by applying controlled short circuits up to 8 kA varying the time period from one to six cycles. The test results show the function of the shunt resistor providing homogeneous quench behavior of the HTS coil besides its intrinsic stabilizing role. The limiting current ratio achieves a factor 4.2 during 5 cycles without any degradation.
Resumo:
The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. Tapes made by the powder in tube (PIT) method have been successfully tested in pilot power plants in many countries but in Brazil. In this paper, 5, 10, and 20-wt% silver powders are introduced to compose the core of the tape along with the Bi:2212 ceramic powder. The results of electrical experiments are compared with those made with no silver addition Ag tapes. The best current density, at 60 K and no applied magnetic field, was found for the 10-wt% silver proportion, doubling the value obtained for the tape with no silver in the core.
Resumo:
Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2.
Resumo:
A long-standing and important problem in glass science has been carrier-type reversal (CTR) in semiconducting glasses. This phenomenon is exhibited by Pb-Ge-Se glasses also. It has been addressed here by carrying out detailed electrical, thermal, and spectroscopic investigations. PbxGe42-xSe58 (x = 0-20) glasses were prepared by a two stage melt-quenching process and characterized using x-ray diffraction, high-resolution electron microscropy, and energy dispersive analysis of x-rays. Thermoelectric power and high-pressure electrical resistivity have been measured. IR, Raman, and X-ray adsorption near edge structure spectroscopies have been used for examining the glass structures as well as differential scanning calorimetry (DSC) for studying the thermal properties. A structural model based on the chemical nature of the constituents has been proposed to account for the observed properties of these glasses. Effect of Pb incorporation on local structures and qualitative consequences on the energy band structures of Ge-Se glasses has been considered. The p -->n transition has been attributed to the energetic disposition of the sp(3)d(2) band of Pb atoms, which is located closely above the lone pair band of selenium. This feature makes Pb unique in the context of p -->n transition of chalcogenide glasses. The model can be extended successfully to account for the CTR behavior observed in Bi containing chalcogenide glasses also.
Resumo:
This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.
Resumo:
In the Bi-based high-T(c) superconductors, three superconducting transition points were observed above the liquid-N2 temperature range. Allotropes of the 2212 phase were found. These allotropes were metastable and can interchange with the 2212 phase, and their T(c)'s vary from approximately 85 to approximately 100 K.
Resumo:
自发现BiSrCaCuO超导体以来,为了稳定2223高T_C相结构、增加其在超导体中的含量,在该体系中引入掺杂元素Pb被公认是最有效的方法。我们系统研究了V~(5+)、Nb~(5+)、Ta~(5+)高价离子的单独掺入Bi系中对
Resumo:
Bi-based (BPSCCO) superconductors have been extensively studied due to their interesting superconducting properties, especially those that present high transition temperature (T-c). In this work, superconductors of the BPSCCO system were prepared from rapid cooling process and studied under its structural and magnetic properties. Sample as-prepared shows an amorphous behavior, which is converted progressively into 2223 phase. This process permits the control of Pb or Bi loss and the crystallization of the desired phase using several heat annealing processes. The 2201 and 2212 phases were also observed as intermediate phases, before the crystallization of the 2223 phase. The superconductor obtained in this work presented a T-c around 77-K. (C) 2005 Springer Science + Business Media, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for Cd and Pb determination in whole blood. The comparison of thermochemical and physicochemical parameters allowed the selection of Ag, Bi, and Tl as internal standard candidates. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte ( axis x), precision and accuracy were used to select Ag as the most appropriate internal standard. Blood samples were diluted (1 + 9) with 0.11% (m/v) Triton X-100 + 1.1% (v/v) HNO3 + 0.28% (m/v) NH4H2PO4 + 10 mug L-1 Ag+. Pyrolysis and atomization temperatures for the optimized heating program were 550 and 1700 degreesC, respectively. Characteristic masses based on integrated absorbance were 1.68 +/- 0.01 pg for Cd and 30.3 +/- 0.1 pg for Pb. The detection limits (DL) were 0.095 +/- 0.001 mug L-1 and 0.86 +/- 0.01 mug L-1 for Cd and Pb, respectively. The mean RSD for all determinations was the same for Cd (13 +/- 9%) with or without Ag as internal standard ( IS). on the other hand, the use of Ag as IS improved the RSD for Pb from 3.6 +/- 4.0% to 2.2 +/- 2.0%. An effective contribution of the internal standard Ag was verified in the recoveries of spiked samples (0.5 mug L-1 Cd2+ and 5.0 mug L-1 Pb2+). The mean recoveries were 81 +/- 8% and 91 +/- 4% for Cd, and 80 +/- 11% and 93 +/- 6% for Pb without and with IS correction, respectively. This is the first application of IS for a simultaneous determination by SIMAAS.