876 resultados para visual analog scale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change and human activity are subjecting the environment to unprecedented rates of change. Monitoring these changes is an immense task that demands new levels of automated monitoring and analysis. We propose the use of acoustics as a proxy for the time consuming auditing of fauna, especially for determining the presence/absence of species. Acoustic monitoring is deceptively simple; seemingly all that is required is a sound recorder. However there are many major challenges if acoustics are to be used for large scale monitoring of ecosystems. Key issues are scalability and automation. This paper discusses our approach to this important research problem. Our work is being undertaken in collaboration with ecologists interested both in identifying particular species and in general ecosystem health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practice of displaying children's artwork in early childhood classrooms poses a number of questions about the child and his or her visual artwork. This paper focuses on young children’s experiences with the display of their own visual artwork. Following Giorgi's (1985a; 1985b) approach to conducting phenomenological psychological research, 13 children between the ages of 4 and 6 years attending an independent school outside metropolitan Detroit, Michigan (USA) participated in semi-structured interviews as a way of uncovering their lived experiences of seeing their artwork displayed. The study yielded 12 essential themes and from these three key issues and their implications for early childhood art education are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within nursing, there is a strong demand for high-quality, cost-effective clinical education experiences that facilitate student learning in the clinical setting The clinical learning environment (CLE) is the interactive network of forces within the clinical setting that influence the students'clinical learning outcomes The identification of factors that characterize CLE could lead to strategies that foster the factors most predictive of desirable student learning outcomes and ameliorate those which may have a negative impact on student outcomes The CLE scale is a 23-item instrument with five subscales staff–student relationships, nurse manager commitment, patient relationships, interpersonal relationships, and student satisfaction These factors have strong substantive face validity and construct validity, as determined by confirmatory factor analysis Reliability coefficients range from high (0 85) to marginal (0 63) The CLE scale provides the educator with a valid and reliable instrument to evaluate affectively relevant factors in the CLE, direct resources to areas where improvement may be required, and nurture those areas functioning well It will assist in the application of resources in a cost-effective, efficient, productive manner, and will ensure that the clinical learning experience offers the nursing student the best possible learning outcomes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study investigated the reliability and construct validity of the Children's Depression Scale. The revised subscales were shown to have strong construct and face validity and high reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benefit finding is a meaning making construct that has been shown to be related to adjustment in people with MS and their carers. This study investigated the dimensions, stability and potency of benefit finding in predicting adjustment over a 12 month interval using a newly developed Benefit Finding in Multiple Sclerosis Scale (BFiMSS). Usable data from 388 persons with MS and 232 carers was obtained from questionnaires completed at Time 1 and 12 months later (Time 2). Factor analysis of the BFiMSS revealed seven psychometrically sound factors: Compassion/Empathy, Spiritual Growth, Mindfulness, Family Relations Growth, Life Style Gains, Personal Growth, New Opportunities. BFiMSS total and factors showed satisfactory internal and retest reliability coefficients, and convergent, criterion and external validity. Results of regression analyses indicated that the Time 1 BFiMSS factors accounted for significant amounts of variance in each of the Time 2 adjustment outcomes (positive states of mind, positive affect, anxiety, depression) after controlling for Time 1 adjustment, and relevant demographic and illness variables. Findings delineate the dimensional structure of benefit finding in MS, the differential links between benefit finding dimensions and adjustment and the temporal unfolding of benefit finding in chronic illness.