984 resultados para stochastic simulation
Resumo:
A complete life cycle model for northern corn rootworm, Diabrotica barberi Smith and Lawrence, is developed using a published single-season model of adult population dynamics and data from field experiments. Temperature-dependent development and age-dependent advancement determine adult population dynamics and oviposition, while a simple stochastic hatch and density-dependent larval survival model determine adult emergence. Dispersal is not modeled. To evaluate the long-run performance of the model, stochastically generated daily air and soil temperatures are used for 100-year simulations for a variety of corn planting and flowering dates in Ithaca, NY, and Brookings, SD. Once the model is corrected for a bias in oviposition, model predictions for both locations are consistent with anecdotal field data. Extinctions still occur, but these may be consistent with northern corn rootworm metapopulation dynamics.
Resumo:
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.
Resumo:
Risks of significant infant drug exposure through human milk arepoorly defined due to lack of large-scale PK data. We propose to useBayesian approach based on population PK (popPK)-guided modelingand simulation for risk prediction. As a proof-of-principle study, weexploited fluoxetine milk concentration data from 25 women. popPKparameters including milk-to-plasma ratio (MP ratio) were estimatedfrom the best model. The dose of fluoxetine the breastfed infant wouldreceive through mother's milk, and infant plasma concentrations wereestimated from 1000 simulated mother-infant pairs, using randomassignment of feeding times and milk volume. A conservative estimateof CYP2D6 activity of 20% of the allometrically-adjusted adult valuewas assumed. Derived model parameters, including MP ratio were consistentwith those reported in the literature. Visual predictive check andother model diagnostics showed no signs of model misspecifications.The model simulation predicted that infant exposure levels to fluoxetinevia mother's milk were below 10% of weight-adjusted maternal therapeuticdoses in >99% of simulated infants. Predicted median ratio ofinfant-mother serum levels at steady state was 0.093 (range 0.033-0.31),consistent with literature reported values (mean=0.07; range 0-0.59).Predicted incidence of relatively high infant-mother ratio (>0.2) ofsteady-state serum fluoxetine concentrations was <1.3%. Overall, ourpredictions are consistent with clinical observations. Our approach maybe valid for other drugs, allowing in silico prediction of infant drugexposure risks through human milk. We will discuss application of thisapproach to another drug used in lactating women.
Resumo:
BACKGROUND: Risks of significant infant drug exposurethrough breastmilk are poorly defined for many drugs, and largescalepopulation data are lacking. We used population pharmacokinetics(PK) modeling to predict fluoxetine exposure levels ofinfants via mother's milk in a simulated population of 1000 motherinfantpairs.METHODS: Using our original data on fluoxetine PK of 25breastfeeding women, a population PK model was developed withNONMEM and parameters, including milk concentrations, wereestimated. An exponential distribution model was used to account forindividual variation. Simulation random and distribution-constrainedassignment of doses, dosing time, feeding intervals and milk volumewas conducted to generate 1000 mother-infant pairs with characteristicssuch as the steady-state serum concentrations (Css) and infantdose relative to the maternal weight-adjusted dose (relative infantdose: RID). Full bioavailability and a conservative point estimate of1-month-old infant CYP2D6 activity to be 20% of the adult value(adjusted by weigth) according to a recent study, were assumed forinfant Css calculations.RESULTS: A linear 2-compartment model was selected as thebest model. Derived parameters, including milk-to-plasma ratios(mean: 0.66; SD: 0.34; range, 0 - 1.1) were consistent with the valuesreported in the literature. The estimated RID was below 10% in >95%of infants. The model predicted median infant-mother Css ratio was0.096 (range 0.035 - 0.25); literature reported mean was 0.07 (range0-0.59). Moreover, the predicted incidence of infant-mother Css ratioof >0.2 was less than 1%.CONCLUSION: Our in silico model prediction is consistent withclinical observations, suggesting that substantial systemic fluoxetineexposure in infants through human milk is rare, but further analysisshould include active metabolites. Our approach may be valid forother drugs. [supported by CIHR and Swiss National Science Foundation(SNSF)]
Resumo:
OBJECTIVETo identify the association between the use of web simulation electrocardiography and the learning approaches, strategies and styles of nursing degree students.METHODA descriptive and correlational design with a one-group pretest-posttest measurement was used. The study sample included 246 students in a Basic and Advanced Cardiac Life Support nursing class of nursing degree.RESULTSNo significant differences between genders were found in any dimension of learning styles and approaches to learning. After the introduction of web simulation electrocardiography, significant differences were found in some item scores of learning styles: theorist (p < 0.040), pragmatic (p < 0.010) and approaches to learning.CONCLUSIONThe use of a web electrocardiogram (ECG) simulation is associated with the development of active and reflexive learning styles, improving motivation and a deep approach in nursing students.
Resumo:
In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
We discuss some practical issues related to the use of the Parameterized Expectations Approach (PEA) for solving non-linear stochastic dynamic models with rational expectations. This approach has been applied in models of macroeconomics, financial economics, economic growth, contracttheory, etc. It turns out to be a convenient algorithm, especially when there is a large number of state variables and stochastic shocks in the conditional expectations. We discuss some practical issues having to do with the application of the algorithm, and we discuss a Fortran program for implementing the algorithm that is available through the internet.We discuss these issues in a battery of six examples.
Resumo:
In this paper we proose the infimum of the Arrow-Pratt index of absoluterisk aversion as a measure of global risk aversion of a utility function.We then show that, for any given arbitrary pair of distributions, thereexists a threshold level of global risk aversion such that all increasingconcave utility functions with at least as much global risk aversion wouldrank the two distributions in the same way. Furthermore, this thresholdlevel is sharp in the sense that, for any lower level of global riskaversion, we can find two utility functions in this class yielding oppositepreference relations for the two distributions.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.
Resumo:
Introduction: Streptomycin, as other aminoglycosides, exhibits concentration-dependent bacterial killing but has a narrow therapeutic window. It is primarily eliminated unchanged by the kidneys. Data and dosing information to achieve a safe regimen in patients with chronic renal failure undergoing hemodialysis (HD) are scarce. Although main adverse reactions are related to prolonged, elevated serum concentrations, literature recommendation is to administer streptomycin after each HD. Patients (or Materials) and Methods: We report the case of a patient with end-stage renal failure, undergoing HD, who was successfully treated with streptomycin for gentamicin-resistant Enterococcus faecalis bacteremia with prosthetic arteriovenous fistula infection. Streptomycin was administered intravenously 7.5 mg/kg, 3 hours before each dialysis (3 times a week) during 6 weeks in combination with amoxicillin. Streptomycin plasma levels were monitored with repeated blood sampling before, after, and between HD sessions. A 2-compartment model was used to reconstruct the concentration time profile over days on and off HD. Results: Streptomycin trough plasma-concentration was 2.8 mg/L. It peaked to 21.4 mg/L 30 minutes after intravenous administration, decreased to 18.2 mg/L immediately before HD, and dropped to 4.5 mg/L at the end of a 4-hour HD session. Plasma level increased again to 5.7 mg/L 2 hours after the end of HD and was 2.8 mg/L 48 hours later, before the next administration and HD. The pharmacokinetics of streptomycin was best described with a 2-compartment model. The computer simulation fitted fairly well to the observed concentrations during or between HD sessions. Redistribution between the 2 compartments after the end of HD reproduced the rebound of plasma concentrations after HD. No significant toxicity was observed during treatment. The outcome of the infection was favorable, and no sign of relapse was observed after a follow-up of 3 months. Conclusion: Streptomycin administration of 7.5 mg/kg 3 hours before HD sessions in a patient with end-stage renal failure resulted in an effective and safe dosing regimen. Monitoring plasma levels along with pharmacokinetic simulation document the suitability of this dosing scheme, which should replace current dosage recommendations for streptomycin in HD.
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.