668 resultados para sputtering
Resumo:
In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)
Resumo:
The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb 2 O 3 –Sb 2 S 3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458nm solid state laser. It is shown, for the first time, the use of holographic technique to measure “in situ”, simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed “in situ” using a laser coupled to a micro-Raman equipment. Results showed that Sb 2 S 3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb 2 O 3 phase. Photo and thermal induced effects on films were studied using UV–Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).
Resumo:
In this work, RVC samples were treated by plasma immersion ion implantation (PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 minutes. Nitrogen, atmospheric air and H2:N2 mixture were employed as plasma sources. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
The Pb1-xLaxTiO3 sintered ferroelectric ceramics with x equal to 0, 0.10, 0.15, 0.20, and 0.30 were studied by X-ray photoelectron spectroscopy (XPS). The binding energy of the Ti 2p lines is consistent with only one chemical state, Ti4+. on the other hand, in the case of Pb 4f and 0 Is XPS spectra, apart from the main peaks attributed to the lattice ions, minor peaks related to the surface states were also observed. The presence of Pb-0 state on the surface of all samples was due to the reduction of lead ions caused by the preferential removal of the oxygen ions after sputtering. The non observation of Ti3+ ions confirms that the mechanism of charge compensation that should occurs owing to the substitution of Ph2+ by La3+ is due to the preferential formation of Pb site vacancies, and not to a reduction from Ti4+ to Ti3+ states. Within the limits of the present experiment, there is no evidence of the existence of non-equivalent Pb, Ti, and La sites as the Pb1-xLaxTiO3 ceramic changes from a normal to a relaxor ferroelectric state. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Despite the great development of organic and polymeric electroluminescent materials, the large scale commercial application of devices made with these materials seems conditioned to specific cases, mainly due to the high cost and the low durability, in compared to conventional technologies. In this study was produced electroluminescent devices by a process simple, drop casting. Were produced electroluminescent films containing Zn2SiO4:Mn immersed in a conductive polymer blend with different thicknesses. The morphological characteristics of these films were studied by scanning electronic microscopy. These films were used in the manufacture of electroluminescent devices, in which the light emission properties of the developed material were evaluated. The blend was composed of the conductive polymer Poly(o-methoxyaniline), doped with p-toluene sulfonic acid, and an insulating polymer, Poly(vinylidene fluoride) and its copolymer Poly(vinylidene fluoride-cotrifluoroethylene). To this blend was added Zn2SiO4:Mn, thereby forming the composite. A first set of devices was obtained using composites with different weight fraction of polymeric and inorganic phases, which were deposited by drop casting over ITO substrates. Upper electrodes of aluminum were deposited by thermal evaporation. The resulting device architecture was a sandwich type structure ITO/ composite/ Al. A second set of devices was obtained as self-sustaining films using the best composite composition obtained for the device of the first set. ITO electrodes were deposited by RF-Sputtering, in both faces of these films. The AC electrical characterization of the devices was made with impedance spectroscopy measurements, and the DC electrical characterization was performed using a source/ meter unit Keithley 2410. The devices light emission was measured using a photodiode coupled to a digital electrometer, Keithley 6517A. The devices electrooptical characterization showed that the...
Resumo:
Fabrication of optoelectronic devices requires the employment of at least one transparent electrode. Usually, commercially transparent electrodes have been made by deposition of indium tin oxide (ITO) films by RF-Sputtering technique. These commercial electrodes have sheet resistance of about 100 Ω/sq and optical transmittance of 77% at the wavelength of 550 nm. The poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) is an alternative material to fabricate transparent electrodes due to its high conductivity (about 600 S/cm) and solubility in water. Soluble conductive materials exhibits advantages for processing of electrode layers, however there is a disadvantage during devices fabrication once materials with the same solvent of the electrode material cannot be coated one over the other. Alternatively, organic/Silica hybrid materials prepared by sol-gel process allow producing bulks and films with high chemical durability. In order to obtain transparent electrodes with high chemical durability, we introduced a blended material comprising the high UV-VIS transparency of organic/Silica sol-gel material and a high conductivity polymer PEDOT:PSS. The organic/Silica sol was obtained using two different molar concentrations (1:1 and 4:1), of tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTS). Amounts of PEDOT:PSS solutions were added to the sol material, resulting in different weight fractions of sol and polymer. G:T/P:P were deposit onto glass substrates by spray-coating. In order to perform electrical characterization of the blended material, gold electrodes were thermally evaporated onto the films. The electrical characterization was performed using a Keithley 2410 source/meter unity and the optical characterization, using a Cary50 UV-Vis spectrophotometer. The absorption coefficient and electric conductivity of the different compositions blends, as function of the PEDOT:PSS concentration, were...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Using inert gas condensation techniques the properties of sputtered neodymium-iron-born clusters were investigated. A D.C. magnetron sputtering source created vaporous Nd-Fe-B which was then condensed into clusters and deposited onto silicon substrates. A composite target of Nd-Fe-B discs on an iron plate and a composite target of Nd-(Fe-Co)-B were utilized to create clusters. The clusters were coated with a carbon layer through R.F. sputtering to prevent oxidation. Samples were investigated in the TEM and showed a size distribution with an average particle diameter of 8.11 nm. The clusters, upon deposition, were amorphous as indicated by diffuse diffraction patterns obtained through SAD. The EDS showed compositionally a direct correlation in the ratio of rare-earth to transition metals between the target and deposited samples. The magnetic properties of the as-deposited clusters showed superparamagnetic properties at high temperatures and ferromagnetic properties at low temperatures; these properties are indicative of rare-earth transition metal amorphous clusters. Annealing of samples showed an initial increase in the coercivity. Samples were annealed in an inert gas atmosphere at 600o C for increasing amounts of time. The samples showed an initial increase in coercivity, but showed no additional increases with additional annealing time. SAD of annealed cluster samples showed the presence of Nd2Fe17 and a bcc-Nd phase. The bcc-Nd is the result of oxidation at high temperatures created during annealing and surface interface energy. The magnetic properties of the annealed samples showed weak coercivity and a saturation magnetization equivalent to that of Nd2Fe17. The annealed clusters showed a slight increase in coercivity at low temperatures. These results indicate a loss of boron during the sputtering process.
Resumo:
Gold nanoparticles (Au-NPs) were deposited on single layer graphene (SLG) and few layers graphene (FLG) by applying the gas aggregation technique, previously adapted to a 4-gun commercial magnetron sputtering system. The samples were supported on SiO2 (280 nm)/Si substrates, and the influence of the applied DC power and deposition times on the nanoparticle-graphene system was investigated by Confocal Raman Microscopy. Analysis of the G and 2D bands of the Raman spectra shows that the integrated intensity ratio (I-2D/I-G) was higher for SLG than for FLG. For the samples produced using a sputtering power of 30W, the intensity (peak height) of the G and 2D bands increased with the deposition time, whereas for those produced applying 60W the peak heights of the G and 2D bands decreased with the deposition time. This behaviour was ascribed to the formation of larger Au-NPs aggregates in the last case. A significant increase of the Full Width Half Maximum (FWHM) of the G band for SLG and FLG was also observed as a function of the DC power and deposition time. Surprisingly, the fine details of the Raman spectra revealed an unintentional doping of SLG and FLG accompanying the increase of size and aggregation of the Au-NPs. (C) 2011 Elsevier B.V. All rights reserved.