960 resultados para soil leaching column chromatography
Resumo:
A simple and fast method for determination of 40 basic drugs in human plasma employing gas-chromatography with nitrogen-phosphorus detection was developed and validated. Drugs were extracted from 800 µL of plasma with 250 µL of butyl acetate at basic pH. Aliquots of the organic extract were directly injected on a column with methylsilicone stationary phase. Total chromatographic run time was 25 min. All compounds were detected in concentrations ranging from therapeutic to toxic levels, with intermediate precision CV% below 11.2 and accuracy in the range of 92-114%.
Resumo:
Culture supernatant of Staphylococcus aureus 722 in 3% triptone plus 1% yeast extract was used for EEA purification, proceeding comparison between dye ligand Red A affinity chromatography and classic chromatography. The capture of SEA with Amberlite CG-50 allowed rapid enterotoxin concentration from the culture supernatant. However, the ratio of 15 mg of the resin to a total of 150 mg of the toxin satured the resin, giving only 10 to 30% of SEA recuperation from the supernatant. The elution of concentrated material throught the Red A column resulted in a recovery of 60,87% of the toxin, and required 76 hours, indicating advantage on classic chromatography. Ion exchange column plus gel filtration recovered only 6,5 % of the SEA, and required 114 hours to conclude the procedure. The eletrophoresis of purified SEA indicated high grade of toxin obtained from Red A column, with 90 % of purity, compared to 60 % of classic column.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds that have been the subject of much concern due to their toxic potential. In this study, margarine?s, vegetable cream and mayonnaise available on the Brazilian market were analyzed for pyrene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(a,h)anthracene. The analytical methodology involved liquid-liquid extraction, clean-up on silica gel column and determination by high performance liquid chromatography using fluorescence detector. Variable levels of contamination were found within differents brands of the same product and within differents batches of the same brand. The total PAH content was in the range of 4.1 to 7.1mug/kg in vegetable cream, 1.7 to 3.9mug/kg in margarine and 1.0 to 21.7mug/kg in mayonnaise. In general the products which according to the label contain corn oil showed the highest levels of contamination. Based on these results and on the importance of fat, oils and derived products for the intake of PAHs, it is recommended that producers of margarine, vegetable creams and mayonnaise start to control the contamination of the vegetable oils used in the elaboration of these products, in order to reduce the exposure of consumers to excessive amounts of potentially carcinogenic compounds.
Resumo:
Application of calcium silicate (SiCa) as soil acidity corrective was evaluated in a Rhodic Hapludox soil with palisade grass conducted under pasture rotation system with different grazing intensities. Experimental design was complete randomized blocks with four grazing intensities - grazing intensities were imposed by forage supply (50, 100, 150 and 200 kg t-1 of DM per LW) - in experimental plots with four replicates and, in the subplots, with seven doses of calcium silicate combined with lime: 0+0, 2+0, 4+0, 6+0, 2+4, 4+2 and 0+6 t ha-1, respectively. In the soil, it was evaluated the effect of four levels of calcium silicate (0, 2, 4 and 6 t ha-1) at 45, 90, and 365 days at three depths (0-10, 10-20 and 20-40 cm) and at 365 days, it was included one level of lime (6 t ha-1). For determination of leaf chemical composition and silicate content in the soil, four levels of calcium silicate (0, 2, 4 and 6 t ha-1) were evaluated at 45 and 365 days and at 45 days only for leaf silicate, whereas for dry matter production, all corrective treatments applied were evaluated in evaluation seasons. Application of calcium silicate was positive for soil chemical traits related to acidity correction (pH(CaCl2), Ca, Mg, K, H+Al and V), but the limestone promoted better results at 365 days. Leaf mineral contents were not influenced by application of calcium silicate, but there was an increase on silicate contents in leaves and in the soil. Dry matter yield and chemical composition of palisade grass improved with the application of correctives.
Resumo:
Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
Pera glabrata (Schott) Baill. was selected for this study after showing a preliminary positive result in a screening of Atlantic Forest plant species in the search for acetylcholinesterase inhibitors and antifungal compounds. The bioassays were conducted with crude ethanol extract of the leaves using direct bioautography method for acetylcholinesterase and antifungal activities. This extract was partitioned with hexane, chloroform and ethyl acetate solvents. The active chloroform fraction was submitted to silica gel chromatography column affording 12 groups. Caffeine, an alkaloid, which showed detection limits of 0.1 and 1.0 µg for anticholinesterasic and antifungal activities, respectively, was isolated from group nine. After microplate analyses, only groups four, nine, 10, 11 and 12 showed acetylcholinesterase inhibitory activity of 40% or higher. The group 12 was purified by preparative layer chromatography affording four sub-fractions. Two sub-fractions from this group were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. The first sub-fraction showed anticholinesterasic activity and contained two major compounds: 9-hydroxy-4-megastigmen-3-one (84%) and caffeine (6%). The second sub-fraction presented five major compounds identified as 9-hydroxy-4-megastigmen-3-one, isololiolide, (-) loliolide, palmitic acid and lupeol and did not show activity.
Resumo:
The mineralogical characterization through mineral quantification of Brazilian soils by X-ray diffraction data using the Rietveld Method is not common. A mineralogical quantification of an Acric Ferralsol from the Ponta Grossa region, state of Paraná, Brazil, was carried out using this Method with X-Ray Diffraction data to verify if this method was suitable for mineral quantification of a highly-weathered soil. The A, AB and B3 horizons were fractioned to separate the different particle sizes: clay, silt, fine sand (by Stokes Law) and coarse sand fractions (by sieving), with the procedure free of chemical treatments. X-ray Fluorescence, Inductively Coupled Plasma Atomic Emission Spectrometry, Infrared Spectroscopy and Mössbauer Spectroscopy were used in order to assist the mineral identification and quantification. The Rietveld Method enabled the quantification of the present minerals. In a general way, the quantitative mineralogical characterization by the Rietveld Method revealed that quartz, gibbsite, rutile, hematite, goethite, kaolinite and halloysite were present in the clay and silt fractions of all horizons. The silt fractions of the deeper horizons were different from the more superficial ones due to the presence of large amounts of quartz. The fine and the coarse sand fractions are constituted mainly by quartz. Therefore, a mineralogical quantification of the finer fraction (clay and silt) by the Rietveld Method was successful.
Resumo:
The potential of charcoal and of partially combusted organic waste to mimic the soil organic matter of the Terras Pretas de Índios (Amazonian Dark Earths) from the Amazon Region is discussed. These materials serve as soil conditioners and as sequesterers of carbon in recalcitrant and in reactive forms. Studies carried out by Brazilian and by international groups have contributed to the emergence of an awareness of the compositions and of the uses of these materials. In this contribution we report on chemical studies that are leading to the development of a scientific and technological awareness, and of innovations that will have value in finding novel uses in applications to soil of chars from organic wastes such as those from the biofuel industry, and from metallurgical and various coal plant residues.
Resumo:
Few articles deal with lead and strontium isotopic analysis of water samples. The aim of this study was to define the chemical procedures for Pb and Sr isotopic analyses of groundwater samples from an urban sedimentary aquifer. Thirty lead and fourteen strontium isotopic analyses were performed to test different analytical procedures. Pb and Sr isotopic ratios as well as Sr concentration did not vary using different chemical procedures. However, the Pb concentrations were very dependent on the different procedures. Therefore, the choice of the best analytical procedure was based on the Pb results, which indicated a higher reproducibility from samples that had been filtered and acidified before the evaporation, had their residues totally dissolved, and were purified by ion chromatography using the Biorad® column. Our results showed no changes in Pb ratios with the storage time.
Resumo:
A method using ultrasonication extraction for the determination of 17 polycyclic aromatic hydrocarbons (PAHs), selected by the USEPA and NIOSH as "consent decree" priority pollutants, in soil by High Performance Liquid Chromatography (HPLC) was studied. Separation and detection were completed in 20 min with a C18 columm, acetonitrile-water gradient elution and ultraviolet absorption and fluorescence detections. The detection limits, for a 10 µL of solution injection, were less than 9,917 ng/g in UV detection and less than 1,866 ng/g in fluorescence detection. Several organic solvents were tested for extraction of the 17 PAHs from soils. Acetone was the best solvent among the three solvents tested, and the order of the extraction efficiencies was: acetone>methanol>acetonitrile. Ultrasonication using acetone as solvent extraction was used to evaluate the biodegradation of those compounds in contaminated soil during a vermicomposting process.
Resumo:
One hundred fifteen cachaça samples derived from distillation in copper stills (73) or in stainless steels (42) were analyzed for thirty five itens by chromatography and inductively coupled plasma optical emission spectrometry. The analytical data were treated through Factor Analysis (FA), Partial Least Square Discriminant Analysis (PLS-DA) and Quadratic Discriminant Analysis (QDA). The FA explained 66.0% of the database variance. PLS-DA showed that it is possible to distinguish between the two groups of cachaças with 52.8% of the database variance. QDA was used to build up a classification model using acetaldehyde, ethyl carbamate, isobutyl alcohol, benzaldehyde, acetic acid and formaldehyde as chemical descriptors. The model presented 91.7% of accuracy on predicting the apparatus in which unknown samples were distilled.
Resumo:
This work describes the construction and testing of a simple pressurized solvent extraction (PSE) system. A mixture of acetone:water (80:20), 80 ºC and 103.5 bar, was used to extract two herbicides (Diuron and Bromacil) from a sample of polluted soil, followed by identification and quantification by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The system was also used to extract soybean oil (70 ºC and 69 bar) using pentane. The extracted oil was weighed and characterized through the fatty acid methyl ester analysis (myristic (< 0.3%), palmitic (16.3%), stearic (2.8%), oleic (24.5%), linoleic (46.3%), linolenic (9.6%), araquidic (0.3%), gadoleic (< 0.3%), and behenic (0.3%) acids) using high-resolution gas chromatography with flame ionization detection (HRGC-FID). PSE results were compared with those obtained using classical procedures: Soxhlet extraction for the soybean oil and solid-liquid extraction followed by solid-phase extraction (SLE-SPE) for the herbicides. The results showed: 21.25 ± 0.36% (m/m) of oil in the soybeans using the PSE system and 21.55 ± 0.65% (m/m) using the soxhlet extraction system; extraction efficiency (recovery) of herbicides Diuron and Bromacil of 88.7 ± 4.5% and 106.6 ± 8.1%, respectively, using the PSE system, and 96.8 ± 1.0% and 94.2 ± 3.9%, respectively, with the SLP-SPE system; limit of detection (LOD) and limit of quantification (LOQ) for Diuron of 0.012 mg kg-1 and 0.040 mg kg-1, respectively; LOD and LOQ for Bromacil of 0.025 mg kg-1 and 0.083 mg kg-1, respectively. The linearity used ranged from 0.04 to 1.50 mg L-1 for Diuron and from 0.08 to 1.50 mg L-1 for Bromacil. In conclusion, using the PSE system, due to high pressure and temperature, it is possible to make efficient, fast extractions with reduced solvent consumption in an inert atmosphere, which prevents sample and analyte decomposition.
Resumo:
The flavonoids present in sugarcane (Saccharum officinarum) extracts were analyzed by liquid chromatography - mass spectrometry (LC-MS), and a study of the fragmentation patterns of selected flavonoids was conducted using orthogonal acceleration time-of-flight electrospray ionization mass spectrometry (ESI-oa-ToF MS). Seven C- and O-glycosylflavones were identified in the extracts, namely, schaftoside, isoschaftoside, luteolin-8-C-(rhamnosylglucoside), vitexin, orientin, tricin-7-O-neohesperidoside and tricin-7-O-glucoside. Of these, five were identified in the absence of direct comparison with their respective standards. The described method also permitted the differentiation of the 6-C and 8-C isomeric flavones, schaftoside and isoschaftoside. The combination of fragmentation data and exact mass measurement showed to be complimentary to the HPLC-UV-MS techniques previously utilized for isomers discrimination in sugarcane studies.
Resumo:
The concentration of 14 organic acids of 50 sugarcane spirits samples was determined by gas chromatography using flame ionization detection. The organic acids analytical quantitative profile in stills and column distilled spirits from wines obtained from the same must were compared. The comparison was also carried in "head", "heart" and "tail fractions of stills distilled spirits. The experimental data were analyzed by Principal Components Analysis (PCA) and pointed out that the distillation process (stills and column) strongly influences the lead spirits' organic acid composition and that producers' operational "cuts off" to produce "tail", "heart" and "head", fractions should be optimized.