973 resultados para server java android logica
Resumo:
Smart card applications represent a growing market. Usually this kind of application manipulate and store critical information that requires some level of security, such as financial or confidential information. The quality and trustworthiness of smart card software can be improved through a rigorous development process that embraces formal techniques of software engineering. In this work we propose the BSmart method, a specialization of the B formal method dedicated to the development of smart card Java Card applications. The method describes how a Java Card application can be generated from a B refinement process of its formal abstract specification. The development is supported by a set of tools, which automates the generation of some required refinements and the translation to Java Card client (host) and server (applet) applications. With respect to verification, the method development process was formalized and verified in the B method, using the Atelier B tool [Cle12a]. We emphasize that the Java Card application is translated from the last stage of refinement, named implementation. This translation process was specified in ASF+SDF [BKV08], describing the grammar of both languages (SDF) and the code transformations through rewrite rules (ASF). This specification was an important support during the translator development and contributes to the tool documentation. We also emphasize the KitSmart library [Dut06, San12], an essential component of BSmart, containing models of all 93 classes/interfaces of Java Card API 2:2:2, of Java/Java Card data types and machines that can be useful for the specifier, but are not part of the standard Java Card library. In other to validate the method, its tool support and the KitSmart, we developed an electronic passport application following the BSmart method. We believe that the results reached in this work contribute to Java Card development, allowing the generation of complete (client and server components), and less subject to errors, Java Card applications.
Resumo:
Formal methods should be used to specify and verify on-card software in Java Card applications. Furthermore, Java Card programming style requires runtime verification of all input conditions for all on-card methods, where the main goal is to preserve the data in the card. Design by contract, and in particular, the JML language, are an option for this kind of development and verification, as runtime verification is part of the Design by contract method implemented by JML. However, JML and its currently available tools for runtime verification were not designed with Java Card limitations in mind and are not Java Card compliant. In this thesis, we analyze how much of this situation is really intrinsic of Java Card limitations and how much is just a matter of a complete re-design of JML and its tools. We propose the requirements for a new language which is Java Card compliant and indicate the lines on which a compiler for this language should be built. JCML strips from JML non-Java Card aspects such as concurrency and unsupported types. This would not be enough, however, without a great effort in optimization of the verification code generated by its compiler, as this verification code must run on the card. The JCML compiler, although being much more restricted than the one for JML, is able to generate Java Card compliant verification code for some lightweight specifications. As conclusion, we present a Java Card compliant variant of JML, JCML (Java Card Modeling Language), with a preliminary version of its compiler
Resumo:
Java Card technology allows the development and execution of small applications embedded in smart cards. A Java Card application is composed of an external card client and of an application in the card that implements the services available to the client by means of an Application Programming Interface (API). Usually, these applications manipulate and store important information, such as cash and confidential data of their owners. Thus, it is necessary to adopt rigor on developing a smart card application to improve its quality and trustworthiness. The use of formal methods on the development of these applications is a way to reach these quality requirements. The B method is one of the many formal methods for system specification. The development in B starts with the functional specification of the system, continues with the application of some optional refinements to the specification and, from the last level of refinement, it is possible to generate code for some programming language. The B formalism has a good tool support and its application to Java Card is adequate since the specification and development of APIs is one of the major applications of B. The BSmart method proposed here aims to promote the rigorous development of Java Card applications up to the generation of its code, based on the refinement of its formal specification described in the B notation. This development is supported by the BSmart tool, that is composed of some programs that automate each stage of the method; and by a library of B modules and Java Card classes that model primitive types, essential Java Card API classes and reusable data structures
Resumo:
This work presents JFLoat, a software implementation of IEEE-754 standard for binary floating point arithmetic. JFloat was built to provide some features not implemented in Java, specifically directed rounding support. That feature is important for Java-XSC, a project developed in this Department. Also, Java programs should have same portability when using floating point operations, mainly because IEEE-754 specifies that programs should have exactly same behavior on every configuration. However, it was noted that programs using Java native floating point types may be machine and operating system dependent. Also, JFloat is a possible solution to that problem
Resumo:
This dissertation aims at extending the JCircus tool, a translator of formal specifications into code that receives a Circus specification as input, and translates the specification into Java code. Circus is a formal language whose syntax is based on Z s and CSP s syntax. JCircus generated code uses JCSP, which is a Java API that implements CSP primitives. As JCSP does not implement all CSP s primitives, the translation strategy from Circus to Java is not trivial. Some CSP primitives, like parallelism, external choice, communication and multi-synchronization are partially implemented. As an aditional scope, this dissertation will also develop a tool for testing JCSP programs, called JCSPUnit, which will also be included in JCircus new version. The extended version of JCircus will be called JCircus 2.0.
Resumo:
The development of smart card applications requires a high level of reliability. Formal methods provide means for this reliability to be achieved. The BSmart method and tool contribute to the development of smart card applications with the support of the B method, generating Java Card code from B specifications. For the development with BSmart to be effectively rigorous without overloading the user it is important to have a library of reusable components built in B. The goal of KitSmart is to provide this support. A first research about the composition of this library was a graduation work from Universidade Federal do Rio Grande do Norte, made by Thiago Dutra in 2006. This first version of the kit resulted in a specification of Java Card primitive types byte, short and boolean in B and the creation of reusable components for application development. This work provides an improvement of KitSmart with the addition of API Java Card specification made in B and a guide for the creation of new components. The API Java Card in B, besides being available to be used for development of applications, is also useful as a documentation of each API class. The reusable components correspond to modules to manipulate specific structures, such as date and time. These structures are not available for B or Java Card. These components for Java Card are generated from specifications formally verified in B. The guide contains quick reference on how to specify some structures and how some situations were adapted from object-orientation to the B Method. This work was evaluated through a case study made through the BSmart tool, that makes use of the KitSmart library. In this case study, it is possible to see the contribution of the components in a B specification. This kit should be useful for B method users and Java Card application developers
Resumo:
This work aims to develop modules that will increase the computational power of the Java-XSC library, and XSC an acronym for "Language Extensions for Scientific Computation . This library is actually an extension of the Java programming language that has standard functions and routines elementary mathematics useful interval. in this study two modules were added to the library, namely, the modulus of complex numbers and complex numbers of module interval which together with the modules original numerical applications that are designed to allow, for example in the engineering field, can be used in devices running Java programs
Resumo:
The visualization of three-dimensional(3D)images is increasigly being sed in the area of medicine, helping physicians diagnose desease. the advances achived in scaners esed for acquisition of these 3d exames, such as computerized tumography(CT) and Magnetic Resonance imaging (MRI), enable the generation of images with higher resolutions, thus, generating files with much larger sizes. Currently, the images of computationally expensive one, and demanding the use of a righ and computer for such task. The direct remote acess of these images thruogh the internet is not efficient also, since all images have to be trasferred to the user´s equipment before the 3D visualization process ca start. with these problems in mind, this work proposes and analyses a solution for the remote redering of 3D medical images, called Remote Rendering (RR3D). In RR3D, the whole hedering process is pefomed a server or a cluster of servers, with high computational power, and only the resulting image is tranferred to the client, still allowing the client to peform operations such as rotations, zoom, etc. the solution was developed using web services written in java and an architecture that uses the scientific visualization packcage paraview, the framework paraviewWeb and the PACS server DCM4CHEE.The solution was tested with two scenarios where the rendering process was performed by a sever with graphics hadwere (GPU) and by a server without GPUs. In the scenarios without GPUs, the soluction was executed in parallel with several number of cores (processing units)dedicated to it. In order to compare our solution to order medical visualization application, a third scenario was esed in the rendering process, was done locally. In all tree scenarios, the solution was tested for different network speeds. The solution solved satisfactorily the problem with the delay in the transfer of the DICOM files, while alowing the use of low and computers as client for visualizing the exams even, tablets and smart phones
Resumo:
Parmodel is a web server for automated comparative modeling and evaluation of protein structures. The aim of this tool is to help inexperienced users to perform modeling, assessment, visualization, and optimization of protein models as well as crystallographers to evaluate structures solved experimentally. It is subdivided in four modules: Parmodel Modeling, Parmodel Assessment, Parmodel Visualization, and Parmodel Optimization. The main module is the Parmodel Modeling that allows the building of several models ford a same protein in a reduced time, through the distribution of modeling processes on a Beowulf cluster. Parmodel automates and integrates the main softwares used in comparative modeling as MODELLER, Whatcheck, Procheck, Raster3D, Molscript, and Gromacs. This web server is freely accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools/parmodel. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Substitution of fuzzy logic control in an electrical system normally controlled by proportional-integral frequency was studied and analyzed. A linear model of an electrical system, the concepts which govern the theory of fuzzy logic, and the application of this theory to systems control, are briefly presented. The methodology of fuzzy logic was then applied to develop a model for an electrical energy system. The results of the simulation demonstrated that fuzzy logic control eliminated the area frequency error and permitted that only the area experiencing an increase in charge responds to this variation. Based on the results, it is concluded that control based on fuzzy logic is simple, is easy to maintain, is of low cost, and can be used to substitute traditional velocity controllers.
Resumo:
This paper introduces Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in Power Electronics. The applet programs were developed with the purpose of providing an interactive visual simulation and analysis of idealized uncontrolled single-phase, and three-phase rectifiers. In addition, this paper discusses the development and utilization of JAVA applet programs to solve some design-oriented equations for rectifier applications. The major goal of these proposed JAVA applets was to provide more facilities for the students increase their pace in Power Electronics course, emphasizing waveforms analysis, and providing conditions for an on-line comparative analysis among different hands-on laboratory experiences, via a normal Internet TCP/IP connection. Therefore, using the proposed JAVA applets, which were embedded in a WWW-HTML-based course in Power Electronics, was observed an important improvement of the apprenticeship for the content of this course. Therefore, the course structure becomes fluid, allowing a true on-line course over the WWW, motivating students to learn its content, and apply it in some applications-oriented projects, and their home-works.
Resumo:
IEEE 1451 Standard is intended to address the smart transducer interfacing problematic in network environments. Usually, proprietary hardware and software is a very efficient solution to in planent the IEEE 1451 normative, although can be expensive and inflexible. In contrast, the use of open and standardized tools for implementing the IEEE 1451 normative is proposed in this paper. Tools such as Java and Phyton programming languages, Linux, programmable logic technology, Personal Computer resources and Ethernet architecture were integrated in order to constructa network node based on the IEEE 1451 standards. The node can be applied in systems based on the client-server communication model The evaluation of the employed tools and expermental results are presented. © 2005 IEEE.
Resumo:
This paper presents Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in basic power electronics circuits. These tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulate steady-state idealized rectifiers (uncontrolled and controlled; single-phase and three-phase). In addition, this paper discusses the development and the use of the Java applet programs to assist the teaching of basics rectifier power electronics circuits, and to serve as a first design tool for basics power electronics circuits in the experiments of the laboratories. In order to validate the developed simulation applets, the results were confronted with results obtained from a well-know simulator package PSPICE. © 2005 IEEE.
Resumo:
Reconfigurable computing is one of the most recent research topics in computer science. The Altera - Nios II soft-core processor can be included in a large set of reconfigurable architectures, especially because it is designed in software, allowing it to be configured according to the application. The recent growth in applications that demand reconfigurable computing made necessary the building of compilers that translate high level languages source codes into reconfigurable devices instruction sets. In this paper we present a compiler that takes as input the bytecodes generated by a Java front-end compiler and generates a set of instructions that attends to the Nios II processor instruction set rules. Our work shows how we process Java bytecodes to the intermediate code, in the Nios II instructions format, and build the control flow and the control dependence graphs. © 2009 IEEE.
Resumo:
Incluye Bibliografía