886 resultados para semi-autonomous information retrieval
Resumo:
[EU]Testu bat koherente egiten duten arrazoiak ulertzea oso baliagarria da testuaren beraren ulermenerako, koherentzia eta koherentzia-erlazioak testu bat edo gehiago koherente diren ondorioztatzen laguntzen baitigu. Lan honetan gai bera duten testu ezberdinen arteko koherentziazko 3 Cross Document Structure Theory edo CST (Radev, 2000) erlazio aztertu eta sailkatu dira. Hori egin ahal izateko, euskaraz idatziriko gai berari buruzko testuak segmentatzeko eta beraien arteko erlazioak etiketatzeko gidalerroak proposatzen dira. 10 testuz osaturiko corpusa etiketatu da; horietako 3 cluster bi etiketatzailek aztertu dute. Etiketatzaileen arteko adostasunaren berri ematen dugu. Koherentzia-erlazioak garatzea oso garrantzitsua da Hizkuntzaren Prozesamenduko hainbat sistementzat, hala nola, informazioa erauzteko sistementzat, itzulpen automatikoarentzat, galde-erantzun sistementzat eta laburpen automatikoarentzat. Etorkizunean CSTko erlazio guztiak corpus esanguratsuan aztertuko balira, testuen arteko koherentzia- erlazioak euskarazko testuen prozesaketa automatikoa bideratzeko lehenengo pausua litzateke hemen egindakoa.
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010
Resumo:
O II SEMINÁRIO DO GRUPO DE PESQUISA MHTX tem como objetivo dar continuidade aos trabalhos iniciados no I Seminário, realizado na Escola de Ciência da Informação da UFMG, no ano de 2013. O presente Seminário conta desta forma, com três mesas-redondas e três palestras.
Resumo:
In this LBD, we present several Apps for playing while learning music or for learning music while playing. The core of all the games is based on the good performance of the real-time audio interaction algorithms developed by the ATIC group at Universidad de Ma ́laga (SPAIN).
Resumo:
We present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio ex- cerpt. To this end, an all-pole spectral envelope model has been selected to describe the global variations of the spectral envelope with the changes of the pitch. We performed a pitch shifting process of some sustained vowels with the envelope processing and without it, and compared both by means of a survey open to volunteers in our website.
Resumo:
Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.
Resumo:
Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.
Resumo:
La Web 2.0 ha tenido un enorme éxito gracias a la posibilidad de una interacción dinámica por parte del usuario, ya no sólo a la hora de participar en elementos colaborativos, como puedan ser los foros, sino en compartir/añadir contenido a la Web. Dos ejemplos claros de este paradigma son YouTube y Flickr. El primero hospeda la mayor parte de los vídeos que podemos encontrar en Internet, y el segundo ha creado la mayor comunidad de fotógrafos existente en la red. Ambos servicios funcionan de una forma similar, el usuario es el que aporta contenidos junto a una información asociada al mismo. Al ser comunidades internacionales, la información añadida por el usuario se realiza en diversos idiomas, por lo que la búsqueda de recursos multimedia en estos sitios es dependiente del idioma de la consulta. En este artículo, presentamos Babxel, un sistema de recuperación de información multimedia y multilingüe, nacido como proyecto de fin de carrera de Ingeniería Informática, como extensión y mejora de FlickrBabel. Babxel aprovecha la capacidad de traducción multilingüe automática para generar más resultados de búsqueda relacionado con la consulta del usuario, resultados que se obtienen de las plataformas mencionadas anteriormente.
Resumo:
Internet growth has provoked that information search had come to have one of the most relevant roles in the industry and to be one of the most current topics in research environments. Internet is the largest information container in history and its facility to generate new information leads to new challenges when talking about retrieving information and discern which one is more relevant than the rest. Parallel to the information growth in quantity, the way information is provided has also changed. One of these changes that has provoked more information traffic has been the emergence of social networks. We have seen how social networks can provoke more traffic than search engines themselves. We can draw conclusions that allow us to take a new approach to the information retrieval problem. Public trusts the most information coming from known contacts. In this document we will explore a possible change in classic search engines to bring them closer to the social side and adquire those social advantages.
Resumo:
This paper presents work done at Medical Minner Project on the TREC-2011 Medical Records Track. The paper proposes four models for medical information retrieval based on Lucene index approach. Our retrieval engine used an Lucen Index scheme with traditional stopping and stemming, enhanced with entity recognition software on query terms. Our aim in this first competition is to set a broader project that involves the develop of a configurable Apache Lucene-based framework that allows the rapid development of medical search facilities. Results around the track median have been achieved. In this exploratory track, we think that these results are a good beginning and encourage us for future developments.
Resumo:
Classification schemes are built at a particular point in time; at inception, they reflect a worldview indicative of that time. This is their strength, but results in potential weak- nesses as worldviews change. For example, if a scheme of mathematics is not updated even though the state of the art has changed, then it is not a very useful scheme to users for the purposes of information retrieval. However, change in schemes is a good thing. Changing allows designers of schemes to update their model and serves as a responsible mediator between resources and users. But change does come at a cost. In the print world, we revise universal clas- sification schemes—sometimes in drastic ways—and this means that over time, the power of a classification scheme to collocate is compromised if we do not account for scheme change in the organization of affected physical resources. If we understand this phenomenon in the print world, we can design ameliorations for the digital world.
Resumo:
Many years have passed since Berners-Lee envi- sioned the Web as it should be (1999), but still many information professionals do not know their precise role in its development, especially con- cerning ontologies –considered one of its main elements. Why? May it still be a lack of under- standing between the different academic commu- nities involved (namely, Computer Science, Lin- guistics and Library and Information Science), as reported by Soergel (1999)? The idea behind the Semantic Web is that of several technologies working together to get optimum information re- trieval performance, which is based on proper resource description in a machine-understandable way, by means of metadata and vocabularies (Greenberg, Sutton and Campbell, 2003). This is obviously something that Library and Information Science professionals can do very well, but, are we doing enough? When computer scientists put on stage the ontology paradigm they were asking for semantically richer vocabularies that could support logical inferences in artificial intelligence as a way to improve information retrieval systems. Which direction should vocabulary development take to contribute better to that common goal? The main objective of this paper is twofold: 1) to identify main trends, issues and problems con- cerning ontology research and 2) to identify pos- sible contributions from the Library and Information Science area to the development of ontologies for the semantic web. To do so, our paper has been structured in the following manner. First, the methodology followed in the paper is reported, which is based on a thorough literature review, where main contributions are analysed. Then, the paper presents a discussion of the main trends, issues and problems concerning ontology re- search identified in the literature review. Recom- mendations of possible contributions from the Library and Information Science area to the devel- opment of ontologies for the semantic web are finally presented.
Resumo:
This thesis develops AI methods as a contribution to computational musicology, an interdisciplinary field that studies music with computers. In systematic musicology a composition is defined as the combination of harmony, melody and rhythm. According to de La Borde, harmony alone "merits the name of composition". This thesis focuses on analysing the harmony from a computational perspective. We concentrate on symbolic music representation and address the problem of formally representing chord progressions in western music compositions. Informally, chords are sets of pitches played simultaneously, and chord progressions constitute the harmony of a composition. Our approach combines ML techniques with knowledge-based techniques. We design and implement the Modal Harmony ontology (MHO), using OWL. It formalises one of the most important theories in western music: the Modal Harmony Theory. We propose and experiment with different types of embedding methods to encode chords, inspired by NLP and adapted to the music domain, using both statistical (extensional) knowledge by relying on a huge dataset of chord annotations (ChoCo), intensional knowledge by relying on MHO and a combination of the two. The methods are evaluated on two musicologically relevant tasks: chord classification and music structure segmentation. The former is verified by comparing the results of the Odd One Out algorithm to the classification obtained with MHO. Good performances (accuracy: 0.86) are achieved. We feed a RNN for the latter, using our embeddings. Results show that the best performance (F1: 0.6) is achieved with embeddings that combine both approaches. Our method outpeforms the state of the art (F1 = 0.42) for symbolic music structure segmentation. It is worth noticing that embeddings based only on MHO almost equal the best performance (F1 = 0.58). We remark that those embeddings only require the ontology as an input as opposed to other approaches that rely on large datasets.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.