957 resultados para polymeric surfactant
Resumo:
Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical technique (Z scan) distinguishing the index variations due to the temperature gradient and the mass gradients. A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffusion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of interaction of the ball of amphiphilic molecules with the solvent.
Resumo:
In this paper, electron paramagnetic resonance, photoluminescence (PL) emission, and quantum mechanical calculations were used to observe and understand the structural order-disorder of CaTiO(3), paying special attention to the role of oxygen vacancy. The PL phenomenon at room temperature of CaTiO(3) is directly influenced by the presence of oxygen vacancies that yield structural order-disorder. These oxygen vacancies bonded at Ti and/or Ca induce new electronic states inside the band gap. Ordered and disordered CaTiO(3) was obtained by the polymeric precursor method. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3190524]
Resumo:
The use of slow release fertilizer has become a new trend to save fertilizer consumption and to minimize environmental pollution. Due to its polymeric cationic, biodegradable, bioabsorbable, and bactericidal characteristics, chitosan (CS) nanoparticle is an interesting material for use in controlled release systems. However, there are no attempts to explore the potential of chitosan nanoparticles as controlled release for NPK fertilizers. In this work chitosan nanoparticles were obtained by polymerizing methacrylic acid for the incorporation of NPK fertilizers. The interaction and stability of chitosan nanoparticle suspensions containing nitrogen (N), phosphorus (P) and potassium (K) were evaluated by FTIR spectroscopy, particle size analysis and zeta-potential. The FTIR results indicated the existence of electrostatic interactions between chitosan nanoparticles and the elements N, P and K. The stability of the CS-PMAA colloidal suspension was higher with the addition of nitrogen and potassium than with the addition of phosphorus, due to the higher anion charge from the calcium phosphate than the anion charges from the potassium chloride and urea. The mean diameter increase of the CS-PMAA nanoparticles in suspension with the addition of different compounds indicated that the elements are being aggregated on the surface of the chitosan nanoparticles.
Resumo:
A synergic effect of amylose on rheological characteristics of lysozyme physical gels evolved out of dimethylsulfoxide-water was verified and analyzed. The dynamics of the gels were experimentally approached by oscillatory rheology. The synergic effect was characterized by a decrease in the threshold DMSO volume fraction required for lysozyme gelation, and by a significant strengthening of the gel structure at over-critical solvent and protein concentrations. Drastic changes in the relaxation and creep curve patterns for systems in the presence of amylose were verified. Complex viscosity dependence on temperature was found to conform to an Arrhenius-like equation, allowing the determination of an activation energy term (Ea, apparent) for discrimination of gel rigidity. A dilatant effect was found to be induced by temperature on the flow behavior of lysozyme dispersions in DMSO-H(2)O in sub-critical conditions for gelation, which was greatly intensified by the presence of amylose in the samples. That transition was interpreted as reflecting a change from a predominant colloidal flow regime, where globular components are the prevailing structural elements, to a mainly fibrillar, polymeric flow behavior.
Resumo:
In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.
Resumo:
The title compound, C(15)H(14)O(2), was obtained by Friedel-Crafts acylation between 2,5-dimethylphenol and benzoyl chloride in the presence of aluminium chloride as a catalyst. The dihedral angle between the benzene rings is 61.95 (4)degrees. In the crystal, O-H center dot center dot center dot O hydrogen bonding and C-H center dot center dot center dot O weak interactions lead to polymeric C(6), C(8) and C(11) chains along the a, b and c-axis directions, respectively.
Resumo:
A procedure for simultaneous separation/preconcentration of copper. zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-I 14). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1). 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0. and 6.3 mu g L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. (C) 2009 Published by Elsevier B.V.
Resumo:
Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors` laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd. Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the firactal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board. (C) 2008 Published by Elsevier B.V.
Resumo:
Glyoxalated soy flour adhesives for wood particleboard added with a much smaller proportion of glyoxalated lignin or tannin and without any addition of either formaldehyde or formaldehyde-based resin are shown to yield results satisfying the relevant standard specifications for interior wood boards. Adhesive resin formulations in which the total content of natural material is either 70 or 80% of the total resin solids content gave good results. The resins comprising 70% by weight of natural material can be used in a much lower proportion on wood chips and can afford pressing times fast enough to be significant under industrial panel pressing conditions. The best formulation of all the ones tried was the one based on glyoxalated precooked soy flour (SG), to which a condensed tannin was added in water solution and a polymeric isocyanate (pMDI), where the proportions of the components SG/T/pMDI was 54/16/30 by weight. (C) 2008 Wiley Periodicals, Inc.
Resumo:
High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.
Resumo:
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene-co-butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 mu m to colloidal size were selected. The size of the clay particles was evaluated by Specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clav distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X-ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical-mechanical analysis, thermogravimetry, and small amplitude oscillatory, shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na-MMT resulted in materials with intercalated structures. (C) 2009 Wiley, Periodicals, Inc. J Appl Polym Sci 112: 1949-1958, 2009
Resumo:
Al(2)CoO(4)-PbCrO(4) and Al(2)CoO(4)-Pb(2)CrO(5) crystalline powders in different proportions were obtained by the polymeric precursor method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of overlapping decomposition reactions due to different exothermal events, which were identified as H(2)O and NO(x) elimination and polymer pyrolysis. The X-ray diffraction patterns of the xAl(2)CoO(4)-(1 - x)PbCrO(4) and xAl(2)CoO(4)-(1 - x)Pb(2)CrO(5) mixed compounds, with x = 1, 0.75, 0.5, 0.25 and 0, were obtained in the crystalline form with their respective phases, and proved consistent with the nominal compositions. The synthesis of these two systems yielded nine different colors and shades.