664 resultados para polyaniline nanofiber


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distance < 1 cm) or conventional electrospinning (spinning distance > 8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention. In this study, we have found that PVDF electrospun in such a distance range can still be fibers, although interfiber connection is formed throughout the web. The interconnected PVDF fibers can have a comparable β crystal phase content and mechanical-to-electrical energy conversion property to those produced by conventional electrospinning. However, the interfiber connection was found to considerably stabilize the fibrous structure during repeated compression and decompression for electrical conversion. More interestingly, the short-distance electrospun PVDF fiber webs have higher delamination resistance and tensile strength than those of PVDF nanofiber webs produced by conventional electrospinning. Short-distance electrospun PVDF nanofibers could be more suitable for the development of robust energy harvesters than conventionally electrospun PVDF nanofibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phase change material (PCM) from a mixture of plant oils was incorporated into electrospun poly(vinyl alcohol) (PVA) nanofibers using an emulsion electrospinning technique. Effects of PCM and PVA content in the emulsions on nanofiber morphology, heat properties, and phase change stability were examined. Higher PCM loadings in the nanofibers led to increased fiber diameter, gouged fiber surfaces, and higher heat enthalpies. The fibers maintained their morphological integrity even if the PCM melted. They showed reliable heat-regulating performance which can undergo at least 100 cycles of phase change. Such PCM fibers may be used for the development of thermoregulating fabrics or in passive heat storage devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogel nanofibers with high water-absorption capacity and excellent biocompatibility offer wide use in biomedical areas. In this study, hydrogel nanofibers from polyvinylpyrrolidone (PVP) and PVP/poly(acrylic acid) (PAA) blend were prepared by electrospinning and by subsequent heat treatment. The effects of post-electrospinning heat treatment and PVP/PAA ratio on hydrogel properties of the nanofibers were examined. Heat treatment at a temperature above 180°C was found to play a key role in forming insoluble and water-absorbent nanofibers. Both PVP and PVP/PAA nanofibers showed high morphology stability in water and excellent water retention capacity. The swelling ratio of PVP/PAA nanofibers declined with increasing heating temperature and decreasing PVP/PAA unit ratio. In comparison with dense casting films, these nanofiber membranes showed nearly doubled swelling ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass production of nanofibers from needleless electrospinning shows great potential in research and development of nanofibers. However, how to improve the electrospinning performance so as to achieve high quality nanofibers is still of great challenge. In this study, airflow has been applied to optimize upward needleless electrospinning from ring spinneret. Effects of airflow speed and the position of airflow on the nanofiber quality and production rate have been investigated. It has been found that thinner and more uniform nanofibers were produced when airflow was applied to needleless electrospinning system. It also improved the collected nonwoven membrane, resulting in better nanofibrous structure of the as-spun nanofibers. Application of airflow on needleless electrospinning would further benefit the development of mass production of nanofibers from needleless electrospinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocellulose is the crystalline domains obtained from renewable cellulosic sources, used to increase mechanical properties and biodegrability in polymer composites. This work has been to study how high pressure defibrillation and chemical purification affect the PALF fibre morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of PALF fibers. The produced nanofibers were bundles of cellulose fibers of widths ranging between 5 and 15 nm and estimated lengths of several micrometers. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. The nanocomposites were prepared by means of compression moulding, by stacking the nanocellulose fibre mats between polyurethane films. The results showed that the nanofibrils reinforced the polyurethane efficiently. The addition of 5 wt% of cellulose nanofibrils to PU increased the strength nearly 300% and the stiffness by 2600%. The developed composites were utilized to fabricate various versatile medical implants. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, cellulose nanofibers were extracted from banana fibers via a steam explosion technique. The chemical composition, morphology and thermal properties of the nanofibers were characterized to investigate their suitability for use in bio-based composite material applications. Chemical characterization of the banana fibers confirmed that the cellulose content was increased from 64% to 95% due to the application of alkali and acid treatments. Assessment of fiber chemical composition before and after chemical treatment showed evidence for the removal of non-cellulosic constituents such as hemicelluloses and lignin that occurred during steam explosion, bleaching and acid treatments. Surface morphological studies using SEM and AFM revealed that there was a reduction in fiber diameter during steam explosion followed by acid treatments. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. TGA and DSC results showed that the developed nanofibers exhibit enhanced thermal properties over the untreated fibers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The real (epsilon') and imaginary (epsilon) components of the complex permittivity of blends of PVDF [poly(vinylidene fluoride)] with POMA [poly(o-methoxyaniline)] doped with toluenosulfonic acid (TSA) containing 1, 2.5, and 5 wt % POMA-TSA were determined in the frequency interval between 10(2) and 3 X 10(6) Hz and in the temperature range from -120 up to 120degreesC. It was observed that the values of epsilon' and epsilon had a greater increase with the POMA-TSA content and with a temperature in the region of frequencies below 10 kHz. This effect decreased with frequency and it was attributed to interfacial polarization. This polarization was caused by the blend heterogeneity, formed by conductive POMA-TSA agglomerates dispersed in an insulating matrix of PVDF. The equation of Maxwell-Garnett, modified by Cohen, was used to evaluate the permittivity and conductivity behavior of POMA-TSA in the blends. A strong decrease was observed in POMA-TSA conductivity in the blend, which was bigger the lower the POMA-TSA content in the blend. This decrease could have been caused either by the POMA dedoping during the blend preparation process or by its dispersion into the insulating matrix. (C) 2002 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 degrees C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 degrees C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compósitos de borracha natural (Hevea brasiliensis)-BN/polianilina - PANI, com diferentes composições foram obtidos através da polimerização por emulsão do monômero anilina na presença da BN e do ácido dodecilbenzeno sulfônico (DBSA). Filmes finos e homogêneos foram obtidos por prensagem a quente. Os compósitos foram caracterizados por condutividade elétrica, FTIR, UV-vis-NIR, DSC e difração de raios X. Compósito com condutividade elétrica cerca de 14 ordens de grandeza maior que a BN foi obtido. Este alto valor de condutividade é atribuído à formação da PANI no estado dopado no compósito, que foi verificado através das técnicas de UV-vis-NIR e FTIR. Os resultados obtidos com a técnica de DSC e difratometria de raios X indicaram que os polímeros são imiscíveis e que a presença da borracha não altera significantemente a fase cristalina da PANI-DBSA no compósito.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of dc longitudinal and transverse conductivity in self-assembled plastdoped films of polyaniline has been studied over the range of 9 K to 320 K, under different applied mechanical pressures. We observe a progressive evolution of the conductivity picture as the applied pressure is increased, especially in the transverse direction, where the conductivity tends to lower as the pressure is increased. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim