936 resultados para pacs: word processing equipment for office automation
Resumo:
This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
My research investigates why nouns are learned disproportionately more frequently than other kinds of words during early language acquisition (Gentner, 1982; Gleitman, et al., 2004). This question must be considered in the context of cognitive development in general. Infants have two major streams of environmental information to make meaningful: perceptual and linguistic. Perceptual information flows in from the senses and is processed into symbolic representations by the primitive language of thought (Fodor, 1975). These symbolic representations are then linked to linguistic input to enable language comprehension and ultimately production. Yet, how exactly does perceptual information become conceptualized? Although this question is difficult, there has been progress. One way that children might have an easier job is if they have structures that simplify the data. Thus, if particular sorts of perceptual information could be separated from the mass of input, then it would be easier for children to refer to those specific things when learning words (Spelke, 1990; Pylyshyn, 2003). It would be easier still, if linguistic input was segmented in predictable ways (Gentner, 1982; Gleitman, et al., 2004) Unfortunately the frequency of patterns in lexical or grammatical input cannot explain the cross-cultural and cross-linguistic tendency to favor nouns over verbs and predicates. There are three examples of this failure: 1) a wide variety of nouns are uttered less frequently than a smaller number of verbs and yet are learnt far more easily (Gentner, 1982); 2) word order and morphological transparency offer no insight when you contrast the sentence structures and word inflections of different languages (Slobin, 1973) and 3) particular language teaching behaviors (e.g. pointing at objects and repeating names for them) have little impact on children's tendency to prefer concrete nouns in their first fifty words (Newport, et al., 1977). Although the linguistic solution appears problematic, there has been increasing evidence that the early visual system does indeed segment perceptual information in specific ways before the conscious mind begins to intervene (Pylyshyn, 2003). I argue that nouns are easier to learn because their referents directly connect with innate features of the perceptual faculty. This hypothesis stems from work done on visual indexes by Zenon Pylyshyn (2001, 2003). Pylyshyn argues that the early visual system (the architecture of the "vision module") segments perceptual data into pre-conceptual proto-objects called FINSTs. FINSTs typically correspond to physical things such as Spelke objects (Spelke, 1990). Hence, before conceptualization, visual objects are picked out by the perceptual system demonstratively, like a finger pointing indicating ‘this’ or ‘that’. I suggest that this primitive system of demonstration elaborates on Gareth Evan's (1982) theory of nonconceptual content. Nouns are learnt first because their referents attract demonstrative visual indexes. This theory also explains why infants less often name stationary objects such as plate or table, but do name things that attract the focal attention of the early visual system, i.e., small objects that move, such as ‘dog’ or ‘ball’. This view leaves open the question how blind children learn words for visible objects and why children learn category nouns (e.g. 'dog'), rather than proper nouns (e.g. 'Fido') or higher taxonomic distinctions (e.g. 'animal').
Resumo:
Voice recognition is one of the key enablers to reduce driver distraction as in-vehicle systems become more and more complex. With the integration of voice recognition in vehicles, safety and usability are improved as the driver’s eyes and hands are not required to operate system controls. Whilst speaker independent voice recognition is well developed, performance in high noise environments (e.g. vehicles) is still limited. La Trobe University and Queensland University of Technology have developed a low-cost hardware-based speech enhancement system for automotive environments based on spectral subtraction and delay–sum beamforming techniques. The enhancement algorithms have been optimised using authentic Australian English collected under typical driving conditions. Performance tests conducted using speech data collected under variety of vehicle noise conditions demonstrate a word recognition rate improvement in the order of 10% or more under the noisiest conditions. Currently developed to a proof of concept stage there is potential for even greater performance improvement.
Resumo:
Background: Sun exposure is the main source of vitamin D. Increasing scientific and media attention to the potential health benefits of sun exposure may lead to changes in sun exposure behaviors. Methods: To provide data that might help frame public health messages, we conducted an online survey among office workers in Brisbane, Australia, to determine knowledge and attitudes about vitamin D and associations of these with sun protection practices. Of the 4,709 people invited to participate, 2,867 (61%) completed the questionnaire. This analysis included 1,971 (69%) participants who indicated that they had heard about vitamin D. Results: Lack of knowledge about vitamin D was apparent. Eighteen percent of people were unaware of the bone benefits of vitamin D but 40% listed currently unconfirmed benefits. Over half of the participants indicated that more than 10 minutes in the sun was needed to attain enough vitamin D in summer, and 28% indicated more than 20 minutes in winter. This was significantly associated with increased time outdoors and decreased sunscreen use. People believing sun protection might cause vitamin D deficiency (11%) were less likely to be frequent sunscreen users (summer odds ratio, 0.63; 95% confidence interval, 0.52-0.75). Conclusions: Our findings suggest that there is some confusion about sun exposure and vitamin D, and that this may result in reduced sun-protective behavior. Impact: More information is needed about vitamin D production in the skin. In the interim, education campaigns need to specifically address the vitamin D issue to ensure that skin cancer incidence does not increase.