947 resultados para optical waveguide
Resumo:
The use of split lenses for multiple imaging and multichannel optical processing is demonstrated. Conditions are obtained for nonoverlapping of multipled images and avoiding crosstalk in the multichannel processing. Almost uniform intensity across the multipled images is an advantage here, while the low ƒ/No. of the split lens segments puts a limit in the resolution in image processing. Experimental results of multiple imaging and of a few multichannel processing are presented.
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Bismuth vanadate (BVO) thin films were fabricated on indium tin oxide (ITO) coated glass substrates using pulsed laser ablation technique and investigated their structural, optical and electrical properties. The use of the indium tin oxide coated glass substrate resulted in reducing the leakage current characteristics of crystalline BVO thin films. The X-ray diffraction (XRD) studies confirmed the monophasic nature of the post annealed (500 A degrees C/1 h) films. The atomic force microscopy indicated the homogeneous distribution of crystallites in the as-deposited films. The as-deposited and the post annealed films were almost 90% transparent (380-900 nm) as confirmed by optical transmission studies. Dielectric constant of around 52 was attained accompanied by the low dielectric loss of 0.002 at 10 kHz for post annealed films. The leakage current of the post annealed BVO films on ITO coated glass substrates measured at room temperature was 8.1 x 10(-8) A at an applied electric field of 33 kV/cm, which was lower than that of the films with platinum and SrRuO3 as the bottom electrodes.
Resumo:
This study focuses on the temperature dependent optical band gap changes in the amorphous Ge2Sb2Te5 (GST) films. The behavior of the amorphous GST thin films at low temperatures has been studied. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature (300 K). The band gap changes associated with the temperature are completely reversible. The other optical parameters like Urbach energy and Tauc parameter (B-1/2) are studied for different temperatures and discussed. The observed changes in optical band gap (E-g) are fitting to Fan's one phonon approximation. Phonon energy ((h) over bar omega) corresponding to a frequency of 3.59 THz is derived from Fan's approximation, which is close to the reported value of 3.66 THz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The moments of the real and the absorptive parts of the antiproton optical potentials are evaluated for the first time to study the geometries of the potentials at 180 MeV. Interesting features are revealed which are found to be comparable to the proton case in general despite the presence of strong annihilation. A few interesting deviations, however, are also found compared to the proton case.
Resumo:
Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.
Resumo:
Effective usage of image guidance by incorporating the refractive index (RI) variation in computational modeling of light propagation in tissue is investigated to assess its impact on optical-property estimation. With the aid of realistic patient breast three-dimensional models, the variation in RI for different regions of tissue under investigation is shown to influence the estimation of optical properties in image-guided diffuse optical tomography (IG-DOT) using numerical simulations. It is also shown that by assuming identical RI for all regions of tissue would lead to erroneous estimation of optical properties. The a priori knowledge of the RI for the segmented regions of tissue in IG-DOT, which is difficult to obtain for the in vivo cases, leads to more accurate estimates of optical properties. Even inclusion of approximated RI values, obtained from the literature, for the regions of tissue resulted in better estimates of optical properties, with values comparable to that of having the correct knowledge of RI for different regions of tissue.
Resumo:
The low-lying singlets and triplets of biphenyl are obtained exactly within the PPP model using the diagrammatic valence bond method. The energy gaps within the singlet manifold as well as the lowest singlet-triplet gap are found to be in good agreement with experimental results. The two weak absorptions between 4·1 and 4·2 eV reported experimentally are attributed to the two states lying below the optical gap that become weakly allowed on breaking electron-hole and inversion symmetries. The observed blue shift of the spectral lines, attributed to a change in dihedral angle, on going from crystalline to solution to vapour phase is also well reproduced within the PPP model. The bond orders show that the ground singlet state is benzenoidal while the dipole excited state as well as the lowest triplet state are quinonoidal and planar. Comparison with the experimental spin densities and the fine structure constants D and E in the triplet state point to slightly weaker correlations than assumed by the PPP model. The introduction of a 1-8 bond to mimic poly(paraphenylene)s gives an optical gap that is in good agreement with experiment.
Resumo:
C21H22N2045, M r = 398.5, orthorhombic, P212~21, a = 9.799 (1), b = 11.853 (1), c = 17.316(2)/~, V=2011.4A 3, Z=4, Dm=l.320, Dx=1.314Mgm -3, CuKa, A=1.5418A, Iz= 1.63 ram-1, F(000) = 840.0, T = 293 K, R = 0.055 for 1735 significant reflections. In the 1-methylthio-2- nitrovinyl moiety the C--C bond, 1.368 (7)A, is significantly longer than in ethylene, 1.336 (2)/~. The second harmonic generation (SHG) efficiency of this compound is only 0.25 of the urea standard. The correlation between the molecular packing and SHG is discussed.
Resumo:
Single molecule force clamp experiments are widely used to investigate how enzymes, molecular motors, and other molecular mechanisms work. We developed a dual-trap optical tweezers instrument with real-time (200 kHz update rate) force clamp control that can exert 0–100 pN forces on trapped beads. A model for force clamp experiments in the dumbbell-geometry is presented. We observe good agreement between predicted and observed power spectra of bead position and force fluctuations. The model can be used to predict and optimize the dynamics of real-time force clamp optical tweezers instruments. The results from a proof-of-principle experiment in which lambda exonuclease converts a double-stranded DNA tether, held at constant tension, into its single-stranded form, show that the developed instrument is suitable for experiments in single molecule biology.
Resumo:
To accurately assess the impact of anthropogenic aerosols on climate, spatial and temporal distribution of its radiative properties is essential. The first step towards separating the radiative impact of natural aerosol from its anthropogenic counterparts is to gather information on natural aerosols. In this paper, we have used data from multiple satellites to derive the anthropogenic aerosol fraction (AAF) over the Afro-Asian region. The AAF was largest during the pre-monsoon season (May-June) and lowest during winter. We have shown that over desert locations the AAF was unexpectedly large (>0.4) and the regionally (and annually) averaged anthropogenic fraction over the Afro-Asian region was 0.54 +/- 0.12. Copyright (C) 2010 Royal Meteorological Society
Resumo:
A report of the design, development ana periom~ance characteristics of a Q-band (8 nim) confoal. mned, aielectric lens beam waveguide is presented.
Resumo:
Wavelength tuning and stability characteristics of a singly resonant continuous-wave optical parametric oscillator (cw OPO) in the proximity of signal-idler degeneracy have been studied. The OPO is made singly resonant by using a Bragg grating as a spectral filter in the OPO cavity. The signal-idler frequency difference can be tuned from 0.5 to 7 THz, which makes the OPO suitable for cw THz generation by optical heterodyning. The operation of the OPO within this singly-resonant regime is characterized by a strong self-stabilization effect. A gradual transition to an unstable, doubly-resonant regime is observed for a signal-idler detuning smaller than ~ 0.5 THz.
Resumo:
A study of radio intensity variations at seven frequencies in the range 0.3 to 90 GHz for compact extragalactic radio sources classified as BL Lacs and high- and low-optical polarization quasars (HPQs and LPQs) is presented. This include the results of flux-density monitoring of 33 compact sources for three years at 327 MHz with the Ooty Synthesis Radio Telescope. The degrees of 'short-term' (tau less than about 1 yr) variability for the three optical types are found to be indistinguishable at low frequencies (less than 1 GHz), pointing to an extrinsic origin for the low-frequency variability. At high frequencies, a distinct dependence on optical type is present, the variability increasing from LPQs, through HPQs to BL Lacs. This trend persists even when only sources with ultra-flat radio spectra (alpha greater than -0.2) are considered. Implications of this for the phenomenon of high-frequency variability and the proposed unification schemes for different optical types of active galactic nuclei are discussed.