986 resultados para metabolic balance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates limit cycle oscillations in the transonic regime. A novel approach to predict Limit Cycle Oscillations using high fidelity analysis is exploited to accelerate calculations. The method used is an Aeroeasltic Harmonic Balance approach, which has been proven to be efficient and able to predict periodic phenomena. The behaviour of limit cycle oscillations is analysed using uncertainty quantification tools based on polynomial chaos expansions. To improve the efficiency of the sampling process for the polynomial-chaos expansions an adaptive sampling procedure is used. These methods are exercised using two problems: a pitch/plunge aerofoil and a delta-wing. Results indicate that Mach n. variability is determinant to the amplitude of the LCO for the 2D test case, whereas for the wing case analysed here, variability in the Mach n. has an almost negligible influence in amplitude variation and the LCO frequency variability has an almost linear relation with Mach number. Further test cases are required to understand the generality of these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic