949 resultados para mesh: Biological Models
Resumo:
An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.
Resumo:
Business Process Modelling is a fast growing field in business and information technology, which uses visual grammars to model and execute the processes within an organisation. However, many analysts present such models in a 2D static and iconic manner that is difficult to understand by many stakeholders. Difficulties in understanding such grammars can impede the improvement of processes within an enterprise due to communication problems. In this chapter we present a novel framework for intuitively visualising animated business process models in interactive Virtual Environments. We also show that virtual environment visualisations can be performed with present 2D business process modelling technology, thus providing a low barrier to entry for business process practitioners. Two case studies are presented from film production and healthcare domains that illustrate the ease with which these visualisations can be created. This approach can be generalised to other executable workflow systems, for any application domain being modelled.
Resumo:
The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
The aim of this case-control study of 617 children was to investigate early childhood caries (ECC) risk indicators in a non-fluoridated region in Australia. ECC cases were recruited from childcare facilities, public hospitals and private specialist clinics to source children from different socioeconomic backgrounds. Non-ECC controls were recruited from the same childcare facilities. A multinomial logistic modelling approach was used for statistical analysis. The results showed that a large percentage of children tested positive for Streptococcus mutans if their mothers also tested positive. A common risk indicator found in ECC children from childcare facilities and public hospitals was visible plaque (OR 4.1, 95% CI 1.0-15.9, and OR 8.7, 95% CI 2.3-32.9, respectively). Compared to ECC-free controls, the risk indicators specific to childcare cases were enamel hypoplasia (OR 4.2, 95% CI 1.0-18.3), difficulty in cleaning child's teeth (OR 6.6, 95% CI 2.2-19.8), presence of S. mutans (OR 4.8, 95% CI 0.7-32.6), sweetened drinks (OR 4.0, 95% CI 1.2-13.6) and maternal anxiety (OR 5.1, 95% CI 1.1-25.0). Risk indicators specific to public hospital cases were S. mutans presence in child (OR 7.7, 95% CI 1.3-44.6) or mother (OR 8.1, 95% CI 0.9-72.4), ethnicity (OR 5.6, 95% CI 1.4-22.1), and access of mother to pension or health care card (OR 20.5, 95% CI 3.5-119.9). By contrast, a history of chronic ear infections was found to be protective for ECC in childcare children (OR 0.28, 95% CI 0.09-0.82). The biological, socioeconomic and maternal risk indicators demonstrated in the present study can be employed in models of ECC that can be usefully applied for future longitudinal studies.
Resumo:
This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.
Resumo:
Digital production and distribution technologies may create new opportunities for filmmaking in Australia. A culture of new approaches to filmmaking is emerging driven by ‘next generation filmmakers’ who are willing to consider new business models: from online web series to short films produced for mobile phones. At the same time cultural representation itself is transforming within an interactive, social media driven environment. Yet there is very little research into next generation filmmaking. The aim of this paper is to scope and discuss three key aspects of next generation filmmaking, namely: digital trends in film distribution and marketing; processes and strategies of ‘next generation’ filmmakers; and case studies of viable next generation business models and filmmaking practices. We conclude with a brief examination of the implications for media and cultural policy which suggests the future possibility of a rapprochement between creative industries discourse and cultural policy.
Resumo:
In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.
Resumo:
The thrust towards constructivist learning and critical thinking in the National Curricular Framework (2005) of India implies shifts in pedagogical practices. In this context, drawing on grounded theory, focus group interviews were conducted with 40 preservice teachers to ascertain the contextual situation and the likely outcomes of applying critical literacy across the curriculum. Central themes that emerged in the discussion were: being teacher centred/ learner centred, and conformity/autonomy in teaching and learning. The paper argues that within the present Indian context, while there is scope for changes to pedagogy and learning styles, yet these must be adequately contextualised.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Resumo:
Our objective was to determine the factors that lead users to continue working with process modeling grammars after their initial adoption. We examined the explanatory power of three theoretical models of IT usage by applying them to two popular process modeling grammars. We found that a hybrid model of technology acceptance and expectation-confirmation best explained user intentions to continue using the grammars. We examined differences in the model results, and used them to provide three contributions. First, the study confirmed the applicability of IT usage models to the domain of process modeling. Second, we discovered that differences in continued usage intentions depended on the grammar type instead of the user characteristics. Third, we suggest implications and practice.
Resumo:
The notion of pedagogy for anyone in the teaching profession is innocuous. The term itself, is steeped in history but the details of the practice can be elusive. What does it mean for an academic to be embracing pedagogy? The problem is not limited to academics; most teachers baulk at the introduction of a pedagogic agenda and resist attempts to have them reflect on their classroom teaching practice, where ever that classroom might be constituted. This paper explores the application of a pedagogic model (Education Queensland, 2001) which was developed in the context of primary and secondary teaching and was part of a schooling agenda to improve pedagogy. As a teacher educator I introduced the model to classroom teachers (Hill, 2002) using an Appreciative Inquiry (Cooperrider and Srivastva 1987) model and at the same time applied the model to my own pedagogy as an academic. Despite being instigated as a model for classroom teachers, I found through my own practitioner investigation that the model was useful for exploring my own pedagogy as a university academic (Hill, 2007, 2008). Cooperrider, D.L. and Srivastva, S. (1987) Appreciative inquiry in organisational life, in Passmore, W. and Woodman, R. (Eds) Research in Organisational Changes and Development (Vol 1) Greenwich, CT: JAI Press. Pp 129-69 Education Queensland (2001) School Reform Longitudinal Study (QSRLS), Brisbane, Queensland Government. Hill, G. (2002, December ) Reflecting on professional practice with a cracked mirror: Productive Pedagogy experiences. Australian Association for Research in Education Conference. Brisbane, Australia. Hill, G. (2007) Making the assessment criteria explicit through writing feedback: A pedagogical approach to developing academic writing. International Journal of Pedagogies and Learning 3(1), 59-66. Hill, G. (2008) Supervising Practice Based Research. Studies in Learning, Evaluation, Innovation and Development, 5(4), 78-87
Resumo:
Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length:diameter = 1:1, 2:1, 3:1) and peas respectively. The density variation of food particulates was studied in a batch fluidised bed dryer connected to a heat pump dehumidifier system. Apparent density and bulk density were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50 o C. Relative humidity of hot air was kept at 15% in all drying temperatures. Several empirical relationships were developed for the determination of changes in densities with the moisture content. Simple mathematical models were obtained to relate apparent density and bulk density with moisture content.