971 resultados para immunological
Resumo:
Experimental allergic encephalomyelitis has been shown to have an immunological basis. In fact, the disease can be induced by T cells specific for myelin basic protein, a molecule found in abundance in the central nervous system. In this article, Ellen Heber-Katz and Hans Acha-Orbea discuss the T-cell receptor (TCR) repertoire of the encephalitogenic T-cell response, and show that a limited V gene pool, in fact a single V beta and two V alpha families, are being used by the PL/J and B10.PL mice and by every rat strain examined, even though the antigenic determinants and the major histocompatibility complex (MHC) molecules are different in all cases. This extraordinary finding suggests that the TCR is involved in encephalitogenicity in a way that not only involves the recognition of antigen in association with MHC, but also as an effector molecule that results in encephalitis. If this is true, it implies that TCRs, in general, play more than one role in mammalian physiology.
Resumo:
The advancement of medical sciences during the last century has resulted in a considerable increase in life expectancy. As more people live to old age, one of the most fundamental questions of the 21st century is whether the number of individuals suffering from dementia will also continue to increase. Alzheimer's disease (AD) accounts for the majority of cases of dementia in the elderly, but there is currently no curative treatment available. Several strategies have been introduced for treatment, the most recent strategy of which was the immunization of patients using antibodies against Abeta, which is a naturally occurring, even though misfolded peptide in the AD brain. Both active and passive immunization routes have been shown to reduce the pathology associated with Abeta accumulation in brains of genetically designed animal models. However, despite tremendous efforts, no unequivocal proof of therapeutic efficacy could be shown in AD patients. Particularly, the persistence of the neurofibrillary tangles in immunized brains and the issue of inducing cerebral amyloid angiopathy are major limiting factors of antibody therapy. Furthermore, physical activity, a healthy immune system and nutritional habits are suggested to protect against the onset of age-associated dementia. Thus, accumulative evidence suggests that an early integrated strategy, combining pharmacological, immunological, nutritional and life-style factors, is the most pragmatic approach to delay the onset and progression of age-associated dementia.
Resumo:
Malignant cells are frequently recognized and destroyed by T cells, hence the development of T cell vaccines against established tumors. The challenge is to induce protective type 1 immune responses, with efficient Th1 and CTL activation, and long-term immunological memory. These goals are similar as in many infectious diseases, where successful immune protection is ideally induced with live vaccines. However, large-scale development of live vaccines is prevented by their very limited availability and vector immunogenicity. Synthetic vaccines have multiple advantages. Each of their components (antigens, adjuvants, delivery systems) contributes specifically to induction and maintenance of T cell responses. Here we summarize current experience with vaccines based on proteins and peptide antigens, and discuss approaches for the molecular characterization of clonotypic T cell responses. With carefully designed step-by-step modifications of innovative vaccine formulations, T cell vaccination can be optimized towards the goal of inducing therapeutic immune responses in humans.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Generating an anti-tumor immune response is a multi-step process that is executed by effector T cells that can recognize and kill tumor targets. However, tumors employ multiple strategies to attenuate the effectiveness of T-cell-mediated attack. They achieve this by interfering with nearly every step required for effective immunity, from deregulation of antigen-presenting cells to establishment of a physical barrier at the vasculature that prevents homing of effector tumor-rejecting cells and the suppression of effector lymphocytes through the recruitment and activation of immunosuppressive cells such as myeloid-derived suppressor cells, tolerogenic monocytes, and T regulatory cells. Here, we review the ways in which tumors exert immune suppression and highlight the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity. Understanding anti-tumor immunity, and how it becomes disabled by tumors, will ultimately lead to improved immune therapies and prolonged survival of patients.
Resumo:
NK cells can kill transformed, infected and stressed cells while most normal cells are spared. NK cells are activated by various endogenous self-ligands, some of which are actually expressed by normal cells. Thus, NK cells are inherently self-reactive and consequently, potentially auto-aggressive. How these cells are prevented from attacking normal cells while ensuring reactivity to diseased cells is a major unresolved question for NK-cell biologists.
Resumo:
OBJECTIVE: To study the causes for the lack of clinical progression in a superinfected HIV-1 LTNP elite controller patient.¦METHODOLOGY AND PRINCIPAL FINDINGS: We studied host genetic, virological and immunological factors associated with viral control in a SI long term non progressor elite controller (LTNP-EC). The individual contained both viruses and maintained undetectable viral loads for >20 years and he did not express any of the described host genetic polymorphisms associated with viral control. None of four full-length gp160 recombinants derived from the LTNP-EC replicated in heterologous peripheral blood mononuclear cells. CTL responses after SI were maintained in two samples separated by 9 years and they were higher in breadth and magnitude than responses seen in most of 250 treatment naïve patients and also 25 controller subjects. The LTNP-EC showed a neutralization response, against 4 of the 6 viruses analyzed, superior to other ECs.¦CONCLUSIONS: The study demonstrated that a strong and sustained cellular and humoral immune response and low replicating viruses are associated with viral control in the superinfected LTNP-EC.
Resumo:
Introduction : Un chylothorax est une pathologie comprenant des manifestations respiratoires, nutritionnelles et immunologiques. La récidive du chylothorax ou l'échec du traitement conservateur imposent un traitement chirurgical. Ce travail rapporte notre expérience de ligature supra-diaphragmatique, vidéo-assistée du canal thoracique, pour chylothorax récurrent non traumatique. Patients et méthodes : Entre 1999 et 2004, nous avons recensé six observations (quatre du côté droit, un du côté gauche et un bilateral) Le chylothorax s'est développé chez trois patients traités par radio et chimiothérapie pour tumeur (deux lymphomes et une tumeur du sein) un dans le contexte d'une lymphangioléiomatose et un après greffe cardiaque. Résultats : Les patients ont bénéficié sous anesthésie générale, d'une ligature du canal thoracique supra-diaphragmatique, vidéo-assistée. Le temps opératoire moyen a été de 102 minutes. Le chylothorax a régressé chez cinq des six patients en sept jours. Un patient a été repris par thoracotomie droite au huitième jour pour chylothorax persistant. Dans la phase post-opératoire, un patient a développé une détresse respiratoire nécessitant une ventilation mécanique. Un autre patient a présenté un chylopéritoine important traité par un stent de Le Veen®. Le séjour moyen a été de quatorze jours sans mortalité péri-opératoire. Conclusion : Le traitement du chylothorax non traumatique récurrent est, en première intention, un traitement médical. En cas de récidive ou d'échec du traitement conservateur, le traitement chirurgical par ligature du canal thoracique supra- diaphragmatique, vidéo-assistée, permet de traiter avec succès le chylothorax récurrent non traumatique. -- Background: Chylothorax is an uncommon disorder with respiratory, nutritional and immunological manifestations. Surgical management is indicated in case of recurrence or failure after conservative treatment. We report our experience with video-assisted right-sided supradiaphrag¬matic thoracic duct ligation for non-traumatic, non-postoperative persistent or recurrent chylothorax. Patients and methods: The medical records of six patients operated at our institution between 1999 and 2004 were retrospectively reviewed. A right-sided chylothorax was found in four patients, a left-sided in one, and a bilateral in one. Three patients developed chylothorax after chemotherapy and chest irradiation for malignant diseases (lymphoma in two patients and breast cancer in one), one in the context of lymphangioleiomyomatosis, one due to a non-diagnosed lymphoma, and one after heart transplantation. Results: The mean operative time was 102 min, with an average length of hospital stay of 14 days. Persistent cessation of chylous effusion within 7 days after surgery was observed in 5/6 patients without recurrence during a mean follow-up time of 41 months. One patient with undiagnosed mediastinal lymphoma required re-operation and thoracic duct ligation on day 8 by right-sided thoracotomy due to persistent chylothorax. No 30-day mortality was recorded. Two patients presented postoperative complications including respiratory insufficiency requiring mechanical ventilation in one, and chylous ascites development requiring peritoneo-venous LeVeen shunting in one patient. Conclusions: Recurrent or persistent non-traumatic chylothorax may be successfully treated by video-assisted right supradiaphragmatic thoracic duct ligation.
Resumo:
ABSTRACT: BACKGROUND: Kabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause. METHODS: Genomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools. RESULTS: We identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site. CONCLUSIONS: This study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management.
Resumo:
Although important progresses have been achieved in the therapeutic management of transplant recipients, acute and chronic rejections remain the leading causes of premature graft loss after solid organ transplantation. This, together with the undesirable side effects of immunosuppressive drugs, has significant implications for the long-term outcome of transplant recipients. Thus, a better understanding of the immunological events occurring after transplantation is essential. The immune system plays an ambivalent role in the outcome of a graft. On one hand, some T lymphocytes with effector functions (called alloreactive) can mediate a cascade of events eventually resulting in the rejection, either acute or chronic, of the grafted organ ; on the other hand, a small subset of T lymphocytes, called regulatory T cells, has been shown to be implicated in the control of these harmful rejection responses, among other things. Thus, we focused our interest on the study of the balance between circulating effectors (alloreactive) and regulatory T lymphocytes, which seems to play an important role in the outcome of allografts, in the context of kidney transplantation. The results were correlated with various variables such as the clinical status of the patients, the immunosuppressive drugs used as induction or maintenance agents, and past or current episodes of rejection. We observed that the percentage of the alloreactive T lymphocyte population was correlated with the clinical status of the kidney transplant recipients. Indeed, the highest percentage was found in patients suffering from chronic humoral rejection, whilst patients on no or only minimal immunosuppressive treatment or on sirolimus-based immunosuppression displayed a percentage comparable to healthy non-transplanted individuals. During the first year after renal transplantation, the balance between effectors and regulatory T lymphocytes was tipped towards the detrimental effector immune response, with the two induction agents studied (thymoglobulin and basiliximab). Overall, these results indicate that monitoring these immunological parameters may be very useful for the clinical follow-up of transplant recipients ; these tests may contribute to identify patients who are more likely to develop rejection or, on the contrary, who tolerate well their graft, in order to adapt the immunosuppressive treatment on an individual basis.
Resumo:
Toll-like receptor ( TLR) s ignals are key to maintaining hostmicrobial i nteractions. T he T oll-interacting-protein (Tollip) is a ubiquitously-expressed inhibitor of inflammasome a nd TLR signaling. W e hypothesized that T ollip might control g ut homeostasis. G enetic ablation of T ollip d id not lead to spontaneous colitis b ut h ad d ramatic c onsequences on t he intestinal expression of the α-defensin cryptidin 4 and the C-type lectin R EGIIIβ. These c hanges were associated with intestinal dysbiosis a nd e nhanced colonization b y segmented filamentous bacteria - a k ey p ro-inflammatory component of the microbiota. Tollip deficiency increased susceptibility to dextran sulfate sodium (DSS) colitis and aggravated chronic Th17-driven colitis in IL-10-/- mice. Flora d epletion w ith a ntibiotics in T ollip-/- mice w as not sufficient to restore DSS colitis susceptibility and deletion of Tollip in n on-hematopoietic c ells using bone-marrow chimeras w as sufficient to increase s usceptibility t o DSS colitis. After D SS administration, we o bserved several e pithelial defects i n Tollip-/- mice including early tight junctions disruption, increased epithelial apoptosis, and increased intestinal permeability. Overall, our data show that T ollip significantly impacts intestinal h omeostasis by controlling b acterial ecology and intestinal r esponse to chemical and immunological stresses.
Resumo:
Tolperisone (Mydocalm) is a centrally acting muscle relaxant with few sedative side effects that is used for the treatment of chronic pain conditions. We describe three cases of suicidal tolperisone poisoning in three healthy young subjects in the years 2006, 2008 and 2009. In all cases, macroscopic and microscopic autopsy findings did not reveal the cause of death. Systematic toxicological analysis (STA) including immunological tests, screening for volatile substances and blood, urine and gastric content screening by GC-MS and HPLC-DAD demonstrated the presence of tolperisone in all cases. In addition to tolperisone, only the analgesics paracetamol (acetaminophen), ibuprofen and naproxen could be detected. The blood ethanol concentrations were all lower than 0.10 g/kg. Tolperisone was extracted by liquid-liquid extraction using n-chlorobutane as the extraction solvent. The quantification was performed by GC-NPD analysis of blood, urine and gastric content. Tolperisone concentrations of 7.0 mg/l, 14 mg/l and 19 mg/l were found in the blood of the deceased. In the absence of other autopsy findings, the deaths in these three cases were finally explained as a result of lethal tolperisone ingestion. To the best of our knowledge, these three cases are the first reported cases of suicidal tolperisone poisonings.
Resumo:
Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ∼1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ∼1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.
Resumo:
Natural killer (NK) cell function is negatively regulated by inhibitory receptors interacting with major histocompatibility complex class I molecules expressed on target cells. Here we show that the inhibitory Ly49A NK cell receptor not only binds to its H-2D(d) ligand expressed on potential target cells (in trans) but also is constitutively associated with H-2D(d) in cis (on the same cell). Cis association and trans interaction occur through the same binding site. Consequently, cis association restricts the number of Ly49A receptors available for binding of H-2D(d) on target cells and reduces NK cell inhibition through Ly49A. By lowering the threshold at which NK cell activation exceeds NK cell inhibition, cis interaction allows optimal discrimination of normal and abnormal host cells.
Resumo:
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.