686 resultados para image preprocessing
Resumo:
This is an image taken from Anatomy tv, an interactive resource for teaching and learning in anatomy and physiology which the University Library subscribes to. This image may not be changed, but you may take a copy and present it with other materials and resources you are using so long as they are password protected for access by members of the University only. "All products and all images within the products are protected by copyright. The products and images can only be used for private educational purposes, unless a specific license is purchased for any other usage. For any commercial usage of the images, please contact Primal Pictures Limited. The products allow members of the University of Southampton to ‘copy and paste’ all of the text as well as the images in the 3D-model window and all of the slides. These can then be pasted into nearly any other word-processing or graphics program, including Powerpoint. These resources can be made available to members of the University of Southampton via a password-protected service. This again is designed solely as a service for private educational uses. Like any publisher, Primal Pictures protects itself against copyright infringement. Please do contact Debra Morris in the University Library before using these resources to ensure that conditions are respected. ©Primal Pictures Limited 2007
Resumo:
"Internet for Image Searching" is a free online tutorial to help staff and students in universities and colleges to find digital images for their learning and teaching. The emphasis of the tutorial is on finding copyright cleared images which are available free; facilitating quick, hassle-free access to a vast range of online photographs and other visual resources. "This tutorial is an excellent resource for anyone needing to know more about where and how to find images online. The fact that it concentrates on copyright cleared images will make it even more valuable for busy learning and teaching professionals, researchers and students alike. It will also serve to inspire confidence in those needing to use images from the web in their work." (Sharon Waller of the Higher Education Academy).
Resumo:
Slides and activity sheets to accompany a set of practical workshop activities which help participants identify some of their individual skills, as the basis for a future coursework to produce a CV
Resumo:
Would you like to learn how to use the Internet to find copyright cleared images for your work, quickly and efficiently?
Resumo:
This webpage provides links to image banks and sources of photos which are usable for educational purposes.
Resumo:
Advertising Design Management's Presentation - Burger King
Resumo:
Talk given by Diana Fitch from Careers Destinations, for COMP1205.
Resumo:
Se ofrece material didáctico audiovisual para la enseñanza de la lengua francesa para ser utilizado en el aula. Está organizado en 15 propuestas didácticas. Incluye ficha pedagógica y ficha de trabajo.
Resumo:
Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images
Resumo:
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram
Resumo:
L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.