817 resultados para hydroelectric power plant
Resumo:
Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.
Resumo:
The reservoirs are water sources built along the fluvial basins, between rivers and dams made by concrete or earth. In Brazil they are built for different purposes, standing out the generation of energy (hydroelectric power station), flowing regulation, water reserves and flooding control, therefore they have played and still play an important role in the modern society.In the Northeastern semiarid region, they are typically used to supply cities and as a source of food.In the state of Rio Grande do Norte, the large reservoirs are intended for the same purpose.The cities settled in the riverbanks, or which have river channels crossing them, face flooding related problems. In the city of Macaíba-RN, flooding occurred systematically during the rainy season, causing great inconvenience to the local population.As product of the collective claim Tabatinga Reservoir in Jundiaí river was built, upstream of the city. Facing this background, this thesis aimed to assess the sócio-environmental quality of this reservoir.To achieve this goal, methodologies pointed to assess water quality along with the aplication of a questionnaire were used aimed to verify the quality of water and to know the perception of the residents from urban and rural área settled near to the reservoir was performed. The results showed the existence of conflicts of residents of rural communities and the presence of the reservoir, while for the city's population, the reservoir is considered not only the right solution to solve flooding in urban areas, but also as economic source for the rural population. Considering the water source assessment, this study concluded that the Tabatinga Reservoir is unfit for human use, due to the presence of metals of toxicological significance with the potential to elicit damage to the genetic material of individuals that use water from this reservoir, leading to cause serious risks to health population.
Resumo:
The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content (226Ra, 232Th and 40K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27e0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.
Resumo:
The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system.
Resumo:
Tutkimus koostuu kolmen Helsingissä sijaitsevan, kolmena eri aikakautena, 1910-, 1950- ja 1990-luvuilla, rakennetun voimalaitoksen arkkitehtuurista ja rakennustyypistä sekä niiden eroista ja erityisyyksistä samoin kuin näiden voimalaitosten roolista ja vaikutuksesta Helsingin kaupunkisuunnitteluun ja -rakentamiseen, kaupunkikuvaan sekä ympäristöestetiikkaan. Tutkimus on rajattu koskemaan erityyppisten voimalaitosten osalta yksinomaan kolmea helsinkiläistä kaupungissa sijaitsevaa voimalaitosta, Suvilahtea, Hanasaari-A:ta ja Vuosaaren A- ja B-laitoksia. Tutkimuksen tarkoituksena on ensinnäkin selvittää sekä periaatteessa että edellä mainittujen kolmen esimerkkikohteen kautta seikkoja, jotka ovat vaikuttaneet kunkin voimalaitoksen arkkitehtuuriin ja rakennustyyppiin kunakin aikakautena. Kaupunkivoimalan olennaiset elementit ovat korkea savupiippu, mittava polttoainevarasto sekä massiiviset rakennusmassat, jotka vaativat runsasta maankäyttöä. Toiseksi tutkimuksessa paneudutaan kaupunkisuunnitteluun laitoksen sijoittumisen osalta sekä ajallisesti että paikallisesti. Kolmanneksi selvitetään kaupunkikuvallisia ja ympäristöesteettisiä seikkoja, sekä niiden vaikutusten kehitystä voimalaitoksen toteutuksen ja nykyhetken kesken. Tutkimuksessa haetaan vastausta kysymykseen, miten Helsingissä sijaitseva voimalaitos arkkitehtuuriltaan, rakennustyypiltään ja sijoitukseltaan on soveltunut ja jatkossa soveltuu kaupunkisuunnittelun kannalta kaupunkikuvallisesti sekä ympäristöesteettisesti kyseiseen kaupunkiympäristöön. Tutkimus selvittää myös sitä ilmeistä ristiriitaa, joka syntyy kaupungin kehittyessä ja laajentuessa, jolloin voimalaitos infrastruktuurinsa ja useimmiten suunnattoman kokonsa vuoksi edustaa pysyvyyttä rakentuvan alueen sisällä. Tässä yhteydessä tutkimuksessa pohditaan esimerkkikohteiden avulla voimalaitoksen säilyttämistä puoltavia rakennustaiteellisia arvoja, mahdollista korvattavuutta, ja siinä yhteydessä haetaan vastauksia jäljelle jäävälle laitosrakennukselle kaupunkisuunnittelun kannalta asetettavista uusiokäytön vaatimuksista ja mahdollisuuksista. Tutkimuksen metodologia on sekä kvantitatiivisesti että kvalitatiivisesti historiallinen, esimerkkikohteita käsiteltäessä tarvittavassa määrin myös mikrohistoriallinen.
Resumo:
Panoramic Sea Happening (After Kantor) is a 7 minute durational film that reimagines part of Tadeusz Kantor's original sea happenings from 1967 in a landscape in which the sea has retreated. The conductor of Kantor’s original performance is replaced with a sound object cast adrift on a beach in Dungeness (UK). The object plays back the sound of the sea into the landscape, which was performed live and then filmed from three distinct angles. The first angle mimics the position of the conductor in Kantor’s original happening, facing outwards into the horizon of the beach and recalls the image in Kantor’s work of a human figure undertaking the absurd task of orchestrating the sound of a gigantic expanse of water. The second angle exposes the machine itself and the large cone that amplifies the sound, reinforcing the isolation of the object. The third angle reveals a decommissioned nuclear power station and sound objects used as a warning system for the power plant. Dungeness is a location where the sea has been retreating from the land, leaving traces of human activity through the disused boat winches, abandoned cabins and the decommissioned nuclear buildings. It is a place in which the footprint of the anthropocene is keenly felt. The sound object is intended to act as an anthropomorphic figure, ghosting the original conductor and offering the sound of the sea back into the landscape through a wide mouthpiece, echoing Kantor’s own load hailer in the original sequence of sea happenings. It speculates on Kantor's theory of the bio-object, which proposed a symbiotic relationship between the human and the nonhuman object in performance, as a possible instrument to access a form of geologic imagination. In this configuration, the human itself is absent, but is evoked through the objects left behind. The sound object, helpless in a red dingy, might be thought of as a co-conspirator with the viewer, enabling a looking back to the past in a landscape of an inevitable future. The work was originally commissioned by the University of Kent in collaboration with the Polish Cultural Institute for the Symposium Kantorbury Kantorbury in Canterbury (UK) to mark the 100 years since Tadeusz Kantor’s birth (15 - 19 September 2015). It should be projected and requires stereo speakers.
Resumo:
The main aim of this study was to evaluate the impact of the urban pollution plume from the city of Manaus by emissions from mobile and stationary sources in the atmospheric pollutants concentrations of the Amazon region, by using The Weather Research and Forecasting with Chemistry (WRF-Chem) model. The air pollutants analyzed were CO, NOx, SO2, O3, PM2.5, PM10 and VOCs. The model simulations have been configured with a grid spacing of 3 km, with 190 x and 136 y grid points in horizontal spacing, centered in the city of Manaus during the period of 17 and 18 of March 2014. The anthropogenic emissions inventories have gathered from mobile sources that were estimated the emissions of light and heavy-duty vehicles classes. In addition, the stationary sources have considered the thermal power plants by the type of energy sources used in the region as well as the emissions from the refinery located in Manaus. Various scenarios have been defined with numerical experiments that considered only emissions by biogenic, mobile and stationary sources, and replacement fuel from thermal power plant, along with a future scenario consisting with twice as much anthropogenic emissions. A qualitative assessment of simulation with base scenario has also been carried out, which represents the conditions of the region in its current state, where several statistical methods were used in order to compare the results of air pollutants and meteorological fields with observed ground-based data located in various points in the study grid. The qualitative analysis showed that the model represents satisfactorily the variables analyzed from the point of view of the adopted parameters. Regarding the simulations, defined from the base scenarios, the numerical experiments indicate relevant results such as: it was found that the stationary sources scenario, where the thermal power plants are predominant, resulted in the highest concentrations, for all air pollutants evaluated, except for carbon monoxide when compared to the vehicle emissions scenario; The replacement of the energy matrix of current thermal power plants for natural gas have showed significant reductions in pollutants analyzed, for instance, 63% reductions of NOx in the contribution of average concentration in the study grid; A significant increase in the concentrations of chemical species was observed in a futuristic scenario, reaching up to a 81% increase in peak concentrations of SO2 in the study area. The spatial distributions of the scenarios have showed that the air pollution plume from Manaus is predominantly west and southwest, where it can reach hundreds of kilometers to areas dominated by original soil covering.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
Työssä luodaan energiapuun varastonhallintamalli ja hankintamalli energiantuotantolaitoksen näkökulmasta sekä kuvataan kustannustehokkaita ja toimitusvarmoja vaihtoehtoja puupolttoaineen varastoinnille ja haketukselle. Varastonhallintamallissa keskitytään varastotason hallintamenetelmiin toimintaympäristössään. Hankintamalli määrittää oman varaston ja suoran laitostoimituksen suhteen sekä auttaa pohtimaan strategisen hankinnan merkitystä hankinnan toteuttamiseen ja hankintakanavien valintaan. Työ antaa vastauksia koko hankintatoiminnan toteutukseen ja hallitsemiseen. Varastonhallintamallin skenaariotarkastelussa selvisi, että yrityksen oma varasto vaatii 18 – 37 % varmuusvaraston suhteessa käyttövarastoon. Hankintamallin mukaan oman varaston kannattavimman puupolttoainejakeen hankintaetäisyys voisi olla keskimäärin korkeintaan 96 km. Tarpeen, saatavuuden, jakeiden kustannustasojen ja toimintaympäristön mahdollisuuksien ollessa selvillä, on mahdollista tehdä päätöksiä hankintakanavista ja varmuusvarastoista kustannustehokkuuden perusteella. Yrityksen polttoainemäärien ohjauksen toteutukseen vaaditaan kehittämistoimia. Oman toimintaympäristön vakiointi ja toimintamallien dokumentointi on tärkeää tiedonjaon, toimitussopimusten mitoittamisen ja toiminnan kehittämisen kannalta. Toiminnan pullonkaulojen vähentäminen ja puupolttoaineen ohjaaminen kustannustehokkaimpien haketusketjujen kautta mahdollisimman tehokkaasti synnyttävät kustannussäästöjä toimitusketjussa.
Resumo:
The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio Pu-240/Pu-239. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 +/- 0.046) evidences that the Pu originates from a nuclear reactor (Pu239+240 activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.
Resumo:
Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.