996 resultados para eastern Pacific Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although various models have been proposed to explain the origin of manganese nodules (see Goldberg and Arrhenius), two major hypotheses have received extensive attention. One concept suggests that manganese nodules form as the result of interaction between submarine volcanic products and sea water. The common association of manganese nodules with volcanic materials constitutes the main evidence for this theory. The second theory involves a direct inorganic precipitation of manganese from sea water. Goldberg and Arrhenius view this process as the oxidation of divalent manganese to tetravalent manganese by oxygen under the catalytic action of particulate iron hydroxides. Manganese accumulation by the Goldberg and Arrhenius theory would be a relatively slow and comparatively steady process, whereas Bonatti and Nayudu believe manganese nodule formation takes place subsequent to the eruption of submarine volcanoes by the acidic leaching of lava.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sand and sandstone compositions from different types of basins reflect provenance terranes governed by plate tectonics. One hundred and one thin sections of Upper Miocene to Holocene sand-sized material were examined from DSDP/IPOD Sites in the North Pacific Ocean and the Bering Sea. The Gazzi-Dickinson point-counting method was used to establish compositional characteristics of sands from different tectonic settings. Continental margin forearc sands from the western North America continental margin arc system are clearly different from backarc/marginal-sea sands from the Aleutian intraoceanic arc system. The forearc sands have average QFL percentages of 29-42-29, LmLvLst percentages of 32-34-34, 3 Fmwk%M and 0.82 P/F. Aleutian backarc sands have average QFL percentages of 8-22-69. LmLvLst percentages of 9-85-6, 0.5 Fmwk%M and 0.96 P/F. A trend of increasing QFL%Q and decreasing LmLvLst%Lv westward in the backarc region of the Aleutian Ridge reflects the influence of the Asiatic continental margin. Aleutian backarc sands without continental influence have average QFL percentages of 1-20-79, LmLvLst percentages of 1-98-1, 0 Fmwk%M and 0.99 P/F. Of the continental margin forearc samples, sands on the Astoria Fan (west of the Oregon-Washington trench) contain the highest LmLvLst%Lv and lowest P/F; sands from mixed transform-fault and trench settings (Delgada Fan and Gulf of Alaska samples) have slightly higher Qp/Q (0.03); and sands from the Pacific-Juan de Fuca-North America triple junction have the highest Fmwk%M. Delgada Fan and Gulf of Alaska sands have average QFL percentages of 27-38-35, LmLvLst percentages of 37-26-37, 2 Fmwk%M and 0.86 P/F. Astoria Fan sands have average QFL percentages of 35-41-24, LmLvLst percentages of 30-47-23, 3 Fmwk%M and 0.74 P/F. The triple-junction sands have average QFL percentages of 28-59-13, LmLvLst percentages of 25-26-49, 9 Fmwk%M and 0.87 P/F. The petrologic data from the modern ocean basins examined in this study can provide useful analogs for interpretation of ancient oceanic sequences. Our data suggest some refinements of, but generally substantiate, existing petrologic models relating sandstone composition to tectonic setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent revisions of the geological time scale by Kent and Gradstein (in press) suggest that, on the average, Cretaceous magnetic anomalies are approximately 10 m.y. older than in Larson and Hilde's (1975) previous time scale. These revised basement ages change estimates for the duration of alteration in the ocean crust, based on the difference between secondary-mineral isochron ages and magnetic isochron-crustal ages, from 3 to approximately 13 m.y. In addition to the revised time scale, Burke et al.'s (1982) new data on the temporal variation of 87Sr/86Sr in seawater allow a better understanding of the timing of alteration and more realistic determinations of water/rock ratios during seawater-basalt interaction. Carbonates from all DSDP sites which reached Layer 2 of Atlantic crust (Sites 105, 332, 417, and 418) are deposited within 10-15 m.y. of crustal formation from solutions with 87Sr/86Sr ratios identical to unaltered or contemporaneous seawater. Comparisons of the revised seawater curve with the 87Sr/86Sr of basement carbonates is consistent with a duration of approximately 10-15 m.y. for alteration in the ocean crust. Our preliminary Sr and 87Sr/86Sr data for carbonates from Hole 504B, on 5.9-m.y.-old crust south of the Costa Rica Rift, suggest that hydrous solutions from which carbonates precipitated contained substantial amounts of basaltic Sr. For this reason, carbonate 87Sr/86Sr cannot be used to estimate the duration of alteration at this site. A basalt-dominated alteration environment at Hole 504B is consistent with heat-flow evidence which indicates rapid sediment burial of crust at the Costa Rica Rift, sealing it from access by seawater and resulting in unusually low water/rock ratios during alteration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cores and dredges described are taken during the R/V Argo ZETES Expedition from March until August 1966 by the Scripps Institute of Oceanography. A total of 53 cores and dredges were recovered and are available at Scripps Institute of Oceanography for sampling and study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated Ocean sediments and seawater from inside the Fukushima exclusion zone and found radiocesium (134Cs and 137Cs) up to 800 Bq kg-1 as well as 90Sr up to 5.6 Bq kg-1. This is one of the first reports on radiostrontium in sea sediments from the Fukushima exclusion zone. Seawater exhibited contamination levels up to 5.3 Bq kg-1 radiocesium. Tap water from Tokyo from weeks after the accident exhibited detectable but harmless activities of radiocesium (well below the regulatory limit). Analysis of the Unit 5 reactor coolant (finding only 3H and even low 129I) leads to the conclusion that the purification techniques for reactor coolant employed at Fukushima Daiichi are very effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea hydrothermal-vent habitats are typically linear, discontinuous, and short-lived. Some of the vent fauna such as the endemic polychaete family Alvinellidae are thought to lack a planktotrophic larval stage and therefore not to broadcast-release their offspring. The genetic evidence points to exchanges on a scale that seems to contradict this type of reproductive pattern. However, the rift valley may topographically rectify the bottom currents, thereby facilitating the dispersal of propagules between active vent sites separated in some cases by 10s of kilometers or more along the ridge axis. A propagule flux model based on a matrix of intersite distances, long-term current-meter data, and information on the biology and ecology of Alvinellidae was developed to test this hypothesis. Calculations of the number of migrants exchanged between two populations per generation (N-m) allowed comparisons with estimates obtained from genetic studies. N, displays a logarithmic decrease with increasing dispersal duration and reaches the critical value of 1 after 8 d when the propagule Aux model was run in standard conditions. At most, propagule traveling time cannot reasonably exceed 15-30 d, according to the model, whereas reported distances between sites would require longer lasting dispersal abilities. Two nonexclusive explanations are proposed. First, some aspects of the biology of Alvinellidae have been overlooked and long-distance dispersal does occur. Second, such dispersal never occurs in Alvinellidae, but the spatial-temporal dynamics of vent sites over geological timescales allows short-range dispersal processes to maintain gene flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Norte del Ecosistema de la Corriente Humboldt (NECH) constituye una de las mayores zonas de afloramiento, localizada en el borde oriental del Pacifico Sur, la cual presenta características particulares, entre las que destacan una alta producción primaria y la presencia de una de las zonas mínimas de oxigeno (ZMO) más intensas en el océano abierto. La ZMO presente en esta zona es producto de la alta demanda de oxígeno durante la remineralización de la materia orgánica, el largo tiempo de residencia de sus aguas y su poca ventilación. En el presente estudio nos enfocamos en estudiar la influencia de cambios en la ventilación en la ZMO del NECH, tomando como las principales fuentes de aporte de oxígeno en esta zona a la Corriente Sub-superficial Ecuatorial (EUC) y las Contracorrientes Sub-superficiales del Sur (SSCCs) o también conocidas como los Jets de Tsuchiya. Utilizamos el modelo acoplado físico-biogeoquímico ROMS-PISCES, para observar la sensibilidad de la ZMO a diferentes condiciones de la circulación ecuatorial provenientes de dos modelos oceánicos de circulación general (SODA y MERCATOR). Los resultados muestran que el flujo de oxígeno a los 88ºW disminuye latitudinalmente de la EUC a los SSCCs; además, se observa que la ZMO desaparece de los 4ºN - 4ºS en la simulación que presenta una circulación más intensa (RPSoda) por lo que se puede concluir que una intensificación de la circulación ecuatorial afectaría principalmente a la zona ecuatorial y no frente a Perú, debido a que una mayor ventilación sería compensada con un mayor consumo de oxigeno durante la remineralización, producto de una alta productividad generada por un mayor flujo de nutrientes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, observations and numerical simulations are used to investigate how different El Nino events affect the development of SST anomalies in the Atlantic and how this relates to the Brazilian northeast (NE) precipitation. The results show that different types of El Nino have different impacts on the SST anomalies of the equatorial and tropical South Atlantic but a similar SST response in the tropical North Atlantic. Strong and long (weak and short) El Ninos with the main heating source located in the eastern (central) Pacific generate cold (warm) anomalies in the cold tongue and Benguela upwelling regions during boreal winter and spring. When the SST anomalies in the eastern equatorial and tropical South Atlantic are cold (warm), the meridional SST gradient across the equator is positive (negative) and the ITCZ is not allowed (allowed) to move southward during the boreal spring; as a consequence, the precipitation is below (above) the average over the NE. Thus, strong and long (weak and short) El Ninos are followed by dry (wet) conditions in the NE. During strong and long El Ninos, changes in the Walker circulation over the Atlantic and in the Pacific-South Atlantic (PSA) wave train cause easterly wind anomalies in the western equatorial Atlantic, which in turn activate the Bjerknes mechanism, establishing the cold tongue in boreal spring and summer. These easterly anomalies are also responsible for the Benguela upwelling. During short and weak El Ninos, westerly wind anomalies are present in the western equatorial Atlantic accompanied by warm anomalies in the eastern equatorial and tropical South Atlantic; a positive phase of the South Atlantic dipole develops during boreal winter. The simulations highlight the importance of ocean dynamics in establishing the correct slope of the equatorial thermocline and SST anomalies, which in turn determine the correct rainfall response over the NE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convectively coupled Kelvin waves over the South American continent are examined through the use of temporal and spatial filtering of reanalysis, satellite, and gridded rainfall data. They are most prominent from November to April, the season analyzed herein. The following two types of events are isolated: those that result from preexisting Kelvin waves over the eastern Pacific Ocean propagating into the continent, and those that apparently originate over Amazonia, forced by disturbances propagating equatorward from central and southern South America. The events with precursors in the Pacific are mainly upper-level disturbances, with almost no signal at the surface. Those events with precursors over South America, on the other hand, originate as upper-level synoptic wave trains that pass over the continent and resemble the ""cold surges`` documented by Garreaud and Wallace. As the wave train propagates over the Andes, it induces a southerly low-level wind that advects cold air to the north. Precipitation associated with a cold front reaches the equator a few days later and subsequently propagates eastward with the characteristics of a Kelvin wave. The structures of those waves originating over the Pacific are quite similar to those originating over South America as they propagate to eastern South America and into the Atlantic. South America Kelvin waves that originate over neither the Pacific nor the midlatitudes of South America can also be identified. In a composite sense, these form over the eastern slope of the Andes Mountains, close to the equator. There are also cases of cold surges that reach the equator yet do not form Kelvin waves. The interannual variability of the Pacific-originating events is related to sea surface temperatures in the central-eastern Pacific Ocean. When equatorial oceanic conditions are warm, there tends to be an increase in the number of disturbances that reach South America from the Pacific.