774 resultados para data-driven decision making
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.
Resumo:
In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.
Resumo:
This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.
Resumo:
For successful implementation of any soil and water conservation (SWC) or sustainable land management practice, it is essential to have a proper understanding of the natural and human environment in which these practices are applied. This understanding should be based on comprehensive information concerning the application of the technologies and not solely on the technological details. The World Overview of Conservation Approaches and Technologies (WOCAT) is documenting and evaluating SWC practices worldwide, following a standardised methodology that facilitates exchange and comparison of experiences. Notwithstanding this standardisation, WOCAT allows flexible use of its outputs, adapted to different users and different environments. WOCAT offers a valuable tool for evaluating the strengths and weaknesses of SWC practices and their potential for application in other areas. Besides collecting a wealth of information, gaps in available information are also exposed, showing the need for more research in those fields. Several key issues for development- oriented research have been identified and are being addressed in collaboration with a research programme for mitigating syndromes of global change.
Resumo:
For perceptual-cognitive skill training, a variety of intervention methods has been proposed, including the so-called “color-cueing method” which aims on superior gaze-path learning by applying visual markers. However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior. Consequently, after a preparatory study on the identification of appropriate visual cues for life-size displays, a perceptual-training experiment on decision-making in beach volleyball was conducted, contrasting two cueing interventions (functional vs. dysfunctional gaze path) with a conservative control condition (anticipation-related instructions). Gaze analyses revealed learning effects for the dysfunctional group only. Regarding decision-making, all groups showed enhanced performance with largest improvements for the control group followed by the functional and the dysfunctional group. Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making. However, before completely denying the method’s value, optimisations should be checked regarding, for instance, cueing-pattern characteristics and gaze-related feedback.
Resumo:
Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.
Resumo:
We focus here on decision making in the everyday clinical situation and do not address decision making in politics and administration, although obviously it affects clinical practice and vice versa. For example, decisions against providing sufficient face-to-face psychotherapy is one factor that may increase the demand for Internet therapy, and vice versa—that is, the use of technology for therapy, as in Internet therapy, might influence to what extent face-to-face therapy needs to be provided. It is obvious that the aggregation of information for political and administrative decisions can take advantage of technology. If technology is used professionally, this should contribute to better informed decisions and less dependency on information provided by lobbyists who might not work in the interest of high-quality service for those who need it. An optimistic view is thus that technology works in favor of patients on this level as well. In the interest of keeping the focus of this chapter manageable, we also do not address treatments fully delivered over the Internet or computers, as for the example described in Comer and Barlow (2014), although such treatments, as they unfold, of course also include decision making.
Resumo:
An evolutionary model of human behavior should privilege emotions: essential, phylogenetically ancient behaviors that learning and decision making only subserve. Infants and non-mammals lack advanced cognitive powers but still survive. Decision making is only a means to emotional ends, which organize and prioritize behavior. The emotion of pride/shame, or dominance striving, bridges the social and biological sciences via internalization of cultural norms.