981 resultados para correlation methods
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).
Resumo:
Assortments of biophysical methods are used to the study the stratum corneum morphology and dynamic with the objective to elucidate the correlation between its structure and functions. Among these methods, there are: X-ray diffraction, electron paramagnetic resonance, differential scanning calorimetry, Raman spectroscopy with Fourrier transform, infrared spectroscopy and photoacustic spectroscopy. In this manuscript, methods are presented and discussed in relation to the use indication, interpretation of results and advantages and limitations to the stratum corneum analysis.
Resumo:
Vecuronium bromide is a neuromuscular blocking agent used for anesthesia to induce skeletal muscle relaxation. HPLC and CZE analytical methods were developed and validated for the quantitative determination of vecuronium bromide. The HPLC method was achieved on an amino column (Luna 150 x 4.6 mm, 5 mu m) using UV detection at 205 nm. The mobile phase was composed of acetonitrile:water containing 25.0 mmol L(-1) of sodium phosphate monobasic (50:50 v/v), pH 4.6 and flow rate of 1.0 mL min(-1). The CZE method was achieved on an uncoated fused-silica capillary (40.0 cm total length, 31.5 cm effective length and 50 mu m i.d.) using indirect UV detection at 230 nm. The electrolyte comprised 1.0 mmol L(-1) of quinine sulfate dihydrate at pH 3.3 and 8.0% of acetonitrile. The results were used to compare both techniques. No significant differences were observed (p > 0.05).
Resumo:
New rapid first-derivative spectrophotometric (UVDS) and a stability-indicating high performance liquid chromatographic (HPLC) methods were developed, validated and successfully applied in the analysis of loratadine (LT) in tablets and syrups. In the UVDS method, 0.1 M HCl was used as solvent. The measurements were made at 312.4 nm in the first order derivative spectra. The HPLC method was carried out on a RP-18 column with a mobile phase composed of methanol-water-tetrahydrofuran (50:30:20, v/v/v). UV detection was made at 247 nm. For HPLC methods the total analysis time was <3min, adequate for routine quality control of tablets and syrups containing loratadine.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 mm id x 46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35 degrees C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 mg/mL. The LOQ was 0.125 mg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.
Resumo:
PLA microparticles containing 17-beta-estradiol valerate were prepared by an emulsion/evaporation method in order to sustain drug release. This system was characterized concerning particle size, particle morphology and the influence of formulation and processing parameters on drug encapsulation and in vitro drug release. The biodegradation of the microparticles was observed by tissue histological analysis. Scanning electron microscopy and particle size analysis showed that the microparticles were spherical, presenting non-aggregated homogeneous surface and had diameters in the range of 718-880 nm (inert microparticles) and 3-4 mu m (drug loaded microparticles). The encapsulation efficiency was similar to 80%. Hormone released from microparticles was sustained. An in vivo degradation experiment confirmed that microparticles are biodegradable. The preparation method was shown to be suitable, since the morphological characteristics and efficiency yield were satisfactory. Thus, the method of developed microparticles seems to be a promising system for sustained release of 17-beta-estradiol.
Resumo:
Background/purpose: Vitamins C and its derivatives, mainly due to their antioxidant properties, are being used in cosmetic products to protect and to reduce the signs of ageing. However, there are no studies comparing the effects of vitamin C [ascorbic acid (AA)] and its derivatives, magnesium ascorbyl phosphate (MAP) and ascorbyl tetra-isopalmitate (ATIP), when vehiculated in topical formulations, mainly using objective measurements, which are an important tool in clinical efficacy studies. Thus, the objective of this study was to determine the in vitro antioxidant activity of AA and its derivatives, MAP and ATIP, as well as their in vivo efficacy on human skin, when vehiculated in topical formulations. Methods: The study of antioxidant activity in vitro was performed with an aqueous and a lipid system. The in vivo methodology consisted of the application of these formulations on human volunteers` forearm skin and the analysis of the skin conditions after 4-week period daily applications in terms of transepidermal water loss (TEWL), stratum corneum moisture content and viscoelasticity using a Tewameter (R), Corneometer (R) and Cutometer (R), respectively. Results: In vitro experiments demonstrated that in an aqueous system, AA had the best antioxidant potential, and MAP was more effective than ATIP, whereas in the lipid system ATIP was more effective than MAP. In in vivo studies, all formulations enhanced stratum corneum moisture content after a 4-week period daily applications when compared with baseline values; however, only the formulation containing AA caused alterations in TEWL values. The formulations containing MAP caused alterations in the viscoelastic-to-elastic ratio, which suggested its action in the deeper layers of the skin. Conclusion: AA and its derivates presented an in vitro antioxidant activity but AA had the best antioxidant effect. In in vivo efficacy studies, only the formulation containing AA caused alterations in TEWL values and the formulation containing MAP caused alterations in the viscoelastic-to-elastic ratio. This way, vitamin C derivatives did not present the same effects of AA on human skin; however, MAP showed other significant effect-improving skin hydration, which is very important for the normal cutaneous metabolism and also to prevent skin alterations and early ageing.
Resumo:
Due to differences in the functional quality of natural extracts, we have also faced differences in their effectiveness. So, it was intended to assess the antioxidant activity of natural extracts in order to attain their functional quality. It was observed that all the extracts (brown and green propolis, Ginkgo biloba and Isoflavin Beta (R)) and the standard used (quercetin) showed antioxidant activity in a dose-dependent manner with IC50 values ranging from 0.21 to 155.28 mu g mL(-1) (inhibition of lipid peroxidation and scavenging of the DPPH center dot assays). We observed a high correlation (r(2)= 0.9913) among the antioxidant methods; on the other hand, the antioxidant activity was not related to the polyphenol and flavonoid content. As the DPPH center dot assay is a fast method, presents low costs and even has a high correlation with other antioxidant methods, it could be applied as an additional parameter in the quality control of natural extracts.
Resumo:
Introduction: Whole blood is used for diagnosis of lead exposure. A non-invasive method to obtain samples for the biomonitoring of lead contamination has become a necessity. This study 1) compares the lead content in whole saliva samples (Pb-saliva) of children from a city with no reported lead contamination (Ribeirao Preto, Sao Paulo State, Brazil) and children of a region notoriously contaminated with lead (Bauru, Sao Paulo State, Brazil), and 2) correlates Pb-saliva with the lead content in the enamel microbiopsy samples (Pb-enamel) in the case of these two populations. Methods: From a population of our previous study that had included 247 children (4- to 6-year-old) from Ribeirao Preto, and 26 children from Bauru, Pb-saliva was analyzed in 125 children from Ribeirdo Preto and 19 children from Bauru by inductively coupled plasma mass spectrometry (ICPMS). To correlate Pb-saliva with Pb-enamel, we used Pb-enamel data obtained in our previous study. The Mann-Whitney test was employed to compare the Pb-saliva data of the two cities. Pb-saliva and Pb-enamel values were then Log(10) transformed to normalize data, and Pb-saliva and Pb-enamel were correlated using Pearson`s correlation coefficient. Results: Median Pb-saliva from the Ribeirao Preto population (1.64 mu g/L) and the Bauru population (5.85 mu g/L) were statistically different (p<0.0001). Pearson`s correlation coefficient for Log(10) Pb-saliva versus Log(10) Pb-enamel was 0.15 (p=0.08) for Ribeirao Preto and 0.38 (p=0.11) for Bauru. Conclusions: A clear relationship between Pb-saliva and environmental contamination by lead is shown. Further studies on Pb-saliva should be undertaken to elucidate the usefulness of saliva as a biomarker of lead exposure, particularly in children. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
P>Typing methods to evaluate isolates in relation to their phenotypical and molecular characteristics are essential in epidemiological studies. In this study, Candida albicans biotypes were determined before and after storage in order to verify their stability. Twenty C. albicans isolates were typed by Randomly Amplified Polymorphic DNA (RAPD), production of phospholipase and proteinase exoenzymes (enzymotyping) and morphotyping before and after 180 days of storage in Sabouraud dextrose agar (SDA) and sterilised distilled water. Before the storage, 19 RAPD patterns, two enzymotypes and eight morphotypes were identified. The fragment patterns obtained by RAPD, on the one hand, were not significantly altered after storage. On the other hand, the majority of the isolates changed their enzymotype and morphotype after storage. RAPD typing provided the better discriminatory index (DI) among isolates (DI = 0.995) and maintained the profile identified, thereby confirming its utility in epidemiological surveys. Based on the low reproducibility observed after storage in SDA and distilled water by morphotyping (DI = 0.853) and enzymotyping (DI = 0.521), the use of these techniques is not recommended on stored isolates.
Resumo:
Aim: Hyperglycemia in diabetes mellitus (DM) may be one of the most important factors responsible for the development of oxidative stress, which promotes the main complications in DM patients. Therefore, this study evaluated if the hyperglycemia could be related to oxidative stress biomarkers, lipid profile, and renal function in type 2 diabetes patients without clinic complications. Methods: Plasmatic malondialdehyde (MDA), serum protein carbonyl (PCO), serum creatinine levels, microalbuminuria, glycated hemoglobin, and lipid profile were analyzed in 37 type 2 diabetic patients and 25 subjects with no diabetes. Results: Serum creatinine levels were within the reference values, but microalbuminuria presented increased levels in all the patients compared with controls (P G 0.05) and above of the reference values. The MDA, PCO, low- density lipoprotein, and triglyceride levels showed positive correlation with microalbuminuria levels. Moreover, glycated hemoglobin presented positive correlation with MDA, PCO, and microalbuminuria levels. Conclusions: The hyperglycemia could be responsible for the increase of the microalbuminuria levels and for the oxidation process in lipids and proteins in DM patients. Therefore, we suggested that the microvascular lesion is a direct consequence from hyperglycemia and an indirect one from the increased oxidative stress. Malondialdehyde and protein carbonyl levels could be suggested as additional biochemical evaluation to verify tissue damage in type 2 DM patients.