800 resultados para cloud computing datacenter performance QoS
Resumo:
The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.
Resumo:
The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues. However, limited work has been done examining the 3-way interaction between use of equipment, user perceptual quality and quality of service. Our work measures user perceptual quality with the quality of perception (QoP) metrics which comprises levels of informational transfer (objective) and user satisfaction (subjective) when users are presented with multimedia video clips at three different frame rates, using four different display devices. Finally, our results will show that variation in frame-rate does not impact a user’s level of information assimilation (IA), however, does impact a users’ perception of multimedia video ‘quality’.
Resumo:
Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Point and click interactions using a mouse are an integral part of computer use for current desktop systems. Compared with younger users though, older adults experience greater difficulties performing cursor positioning tasks, and this can present limitations to using a computer easily and effectively. Target expansion is a technique for improving pointing performance, where the target dynamically grows as the cursor approaches. This has the advantage that targets conserve screen real estate in their unexpanded state, yet can still provide the benefits of a larger area to click on. This paper presents two studies of target expansion with older and younger participants, involving multidirectional point-select tasks with a computer mouse. Study 1 compares static versus expanding targets, and Study 2 compares static targets with three alternative techniques for expansion. Results show that expansion can improve times by up to 14%, and reduce error rates by up to 50%. Additionally, expanding targets are beneficial even when the expansion happens late in the movement, i.e. after the cursor has reached the expanded target area or even after it has reached the original target area. Participants’ subjective feedback on the target expansion are generally favorable, and this lends further support for the technique.
Resumo:
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).
Resumo:
The use of virtualization in high-performance computing (HPC) has been suggested as a means to provide tailored services and added functionality that many users expect from full-featured Linux cluster environments. The use of virtual machines in HPC can offer several benefits, but maintaining performance is a crucial factor. In some instances the performance criteria are placed above the isolation properties. This selective relaxation of isolation for performance is an important characteristic when considering resilience for HPC environments that employ virtualization. In this paper we consider some of the factors associated with balancing performance and isolation in configurations that employ virtual machines. In this context, we propose a classification of errors based on the concept of “error zones”, as well as a detailed analysis of the trade-offs between resilience and performance based on the level of isolation provided by virtualization solutions. Finally, a set of experiments are performed using different virtualization solutions to elucidate the discussion.
Resumo:
Performance modelling is a useful tool in the lifeycle of high performance scientific software, such as weather and climate models, especially as a means of ensuring efficient use of available computing resources. In particular, sufficiently accurate performance prediction could reduce the effort and experimental computer time required when porting and optimising a climate model to a new machine. In this paper, traditional techniques are used to predict the computation time of a simple shallow water model which is illustrative of the computation (and communication) involved in climate models. These models are compared with real execution data gathered on AMD Opteron-based systems, including several phases of the U.K. academic community HPC resource, HECToR. Some success is had in relating source code to achieved performance for the K10 series of Opterons, but the method is found to be inadequate for the next-generation Interlagos processor. The experience leads to the investigation of a data-driven application benchmarking approach to performance modelling. Results for an early version of the approach are presented using the shallow model as an example.
Resumo:
Ground-based remote-sensing observations from Atmospheric Radiation Measurement (ARM) and Cloud-Net sites are used to evaluate the clouds predicted by a weather forecasting and climate model. By evaluating the cloud predictions using separate measures for the errors in frequency of occurrence, amount when present, and timing, we provide a detailed assessment of the model performance, which is relevant to weather and climate time-scales. Importantly, this methodology will be of great use when attempting to develop a cloud parametrization scheme, as it provides a clearer picture of the current deficiencies in the predicted clouds. Using the Met Office Unified Model, it is shown that when cloud fractions produced by a diagnostic and a prognostic cloud scheme are compared, the prognostic cloud scheme shows improvements to the biases in frequency of occurrence of low, medium and high cloud and to the frequency distributions of cloud amount when cloud is present. The mean cloud profiles are generally improved, although it is shown that in some cases the diagnostic scheme produced misleadingly good mean profiles as a result of compensating errors in frequency of occurrence and amount when present. Some biases remain when using the prognostic scheme, notably the underprediction of mean ice cloud fraction due to the amount when present being too low, and the overprediction of mean liquid cloud fraction due to the frequency of occurrence being too high.
Resumo:
With the emerging prevalence of smart phones and 4G LTE networks, the demand for faster-better-cheaper mobile services anytime and anywhere is ever growing. The Dynamic Network Optimization (DNO) concept emerged as a solution that optimally and continuously tunes the network settings, in response to varying network conditions and subscriber needs. Yet, the DNO realization is still at infancy, largely hindered by the bottleneck of the lengthy optimization runtime. This paper presents the design and prototype of a novel cloud based parallel solution that further enhances the scalability of our prior work on various parallel solutions that accelerate network optimization algorithms. The solution aims to satisfy the high performance required by DNO, preliminarily on a sub-hourly basis. The paper subsequently visualizes a design and a full cycle of a DNO system. A set of potential solutions to large network and real-time DNO are also proposed. Overall, this work creates a breakthrough towards the realization of DNO.
Resumo:
The simulated annealing approach to crystal structure determination from powder diffraction data, as implemented in the DASH program, is readily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can be achieved by distributing individual DASH runs over a network of computers. The CDASH program delivers this by using scalable on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Z0 = 3, 30 degrees of freedom) ca 40 times faster than a typical modern quad-core desktop CPU. Whilst used here specifically for DASH, this approach is of general applicability to other packages that are amenable to coarse-grained parallelism strategies.
Resumo:
The InteGrade middleware intends to exploit the idle time of computing resources in computer laboratories. In this work we investigate the performance of running parallel applications with communication among processors on the InteGrade grid. As costly communication on a grid can be prohibitive, we explore the so-called systolic or wavefront paradigm to design the parallel algorithms in which no global communication is used. To evaluate the InteGrade middleware we considered three parallel algorithms that solve the matrix chain product problem, the 0-1 Knapsack Problem, and the local sequence alignment problem, respectively. We show that these three applications running under the InteGrade middleware and MPI take slightly more time than the same applications running on a cluster with only LAM-MPI support. The results can be considered promising and the time difference between the two is not substantial. The overhead of the InteGrade middleware is acceptable, in view of the benefits obtained to facilitate the use of grid computing by the user. These benefits include job submission, checkpointing, security, job migration, etc. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
IPTV is now offered by several operators in Europe, US and Asia using broadcast video over private IP networks that are isolated from Internet. IPTV services rely ontransmission of live (real-time) video and/or stored video. Video on Demand (VoD)and Time-shifted TV are implemented by IP unicast and Broadcast TV (BTV) and Near video on demand are implemented by IP multicast. IPTV services require QoS guarantees and can tolerate no more than 10-6 packet loss probability, 200 ms delay, and 50 ms jitter. Low delay is essential for satisfactory trick mode performance(pause, resume,fast forward) for VoD, and fast channel change time for BTV. Internet Traffic Engineering (TE) is defined in RFC 3272 and involves both capacity management and traffic management. Capacity management includes capacityplanning, routing control, and resource management. Traffic management includes (1)nodal traffic control functions such as traffic conditioning, queue management, scheduling, and (2) other functions that regulate traffic flow through the network orthat arbitrate access to network resources. An IPTV network architecture includes multiple networks (core network, metronetwork, access network and home network) that connects devices (super head-end, video hub office, video serving office, home gateway, set-top box). Each IP router in the core and metro networks implements some queueing and packet scheduling mechanism at the output link controller. Popular schedulers in IP networks include Priority Queueing (PQ), Class-Based Weighted Fair Queueing (CBWFQ), and Low Latency Queueing (LLQ) which combines PQ and CBWFQ.The thesis analyzes several Packet Scheduling algorithms that can optimize the tradeoff between system capacity and end user performance for the traffic classes. Before in the simulator FIFO,PQ,GPS queueing methods were implemented inside. This thesis aims to implement the LLQ scheduler inside the simulator and to evaluate the performance of these packet schedulers. The simulator is provided by ErnstNordström and Simulator was built in Visual C++ 2008 environmentand tested and analyzed in MatLab 7.0 under windows VISTA.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
It s notorious the advance of computer networks in recent decades, whether in relation to transmission rates, the number of interconnected devices or the existing applications. In parallel, it s also visible this progress in various sectors of the automation, such as: industrial, commercial and residential. In one of its branches, we find the hospital networks, which can make the use of a range of services, ranging from the simple registration of patients to a surgery by a robot under the supervision of a physician. In the context of both worlds, appear the applications in Telemedicine and Telehealth, which work with the transfer in real time of high resolution images, sound, video and patient data. Then comes a problem, since the computer networks, originally developed for the transfer of less complex data, is now being used by a service that involves high transfer rates and needs requirements for quality of service (QoS) offered by the network . Thus, this work aims to do the analysis and comparison of performance of a network when subjected to this type of application, for two different situations: the first without the use of QoS policies, and the second with the application of such policies, using as scenario for testing, the Metropolitan Health Network of the Federal University of Rio Grande do Norte (UFRN)