944 resultados para cardio-respiratory failure
Resumo:
A technique is proposed for classifying respiratory volume waveforms(RVW) into normal and abnormal categories of respiratory pathways. The proposed method transforms the temporal sequence into frequency domain by using an orthogonal transform, namely discrete cosine transform (DCT) and the transformed signal is pole-zero modelled. A Bayes classifier using model pole angles as the feature vector performed satisfactorily when a limited number of RVWs recorded under deep and rapid (DR) manoeuvre are classified.
Resumo:
Optimal maintenance policies for a machine with degradation in performance with age and subject to failure are derived using optimal control theory. The optimal policies are shown to be, normally, of bang-coast nature, except in the case when probability of machine failure is a function of maintenance. It is also shown, in the deterministic case that a higher depreciation rate tends to reverse this policy to coast-bang. When the probability of failure is a function of maintenance, considerable computational effort is needed to obtain an optimal policy and the resulting policy is not easily implementable. For this case also, an optimal policy in the class of bang-coast policies is derived, using a semi-Markov decision model. A simple procedure for modifying the probability of machine failure with maintenance is employed. The results obtained extend and unify the recent results for this problem along both theoretical and practical lines. Numerical examples are presented to illustrate the results obtained.
Resumo:
In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (M phi) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient M phi revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected M phi. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli-or S. aureus-infected wild-type M phi, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX-/- NOS2(-/-) M phi further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX-/- NOS2(-/-) M phi cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria.
Resumo:
Hydrogenperoxide (H2O2) is generated in mitochondria in aerobic cells as a minor product of electron transport, is inhibited selectively by phenolic acids (in animals) or salicylhydroxamate (in plants) and is regulated by hormones and environmental conditions. Failure to detect this activity is due to presence of H2O2-consuming reactions or inhibitors present in the reaction mixture. H2O2 has a role in metabolic regulation and signal transduction reactions. A number of enzymes and cellular activities are modified, mostly by oxidizing the protein-thiol groups, on adding H2O2 in mM concentrations. On complexing with vanadate, also occurring in traces, H2O2 forms diperoxovanadate (DPV), stable at physiological pH and resistant to degradation by catalase. DPV was found to substitute for H2O2 at concentrations orders of magnitude lower, and in presence of catalase, as a substrate for user reaction, horseradish peroxidase (HRP), and in inactivating glyceraldehyde-3-phosphate dehydrogenase. superoxide dismutase (SOD)-sensitive oxidation of NADH was found to operate as peroxovanadate cycle using traces of DPV and decameric vanadate (V-10) and reduces O-2 to peroxide (DPV in presence of free vanadate). This offers a model for respiratory burst. Diperoxovanadate reproduces several actions of H2O2 at low concentrations: enhances protein tyrosine phosphorylation, activates phospholipase D, produces smooth muscle contraction, and accelerates stress induced premature senescence (SIPS) and rounding in fibroblasts. Peroxovanadates can be useful tools in the studies on H2O2 in cellular activities and regulation.
Resumo:
This article deals with the durability of 2D woven mat carbon/polyester, glass/isopolyester, and gel-coated glass/isopolyester reinforced composites under hygrothermic conditions with regard to marine applications. The test coupons were exposed to 60 degrees C and 70 degrees C at 95% RH for a maximum duration of 100 h. The samples were periodically withdrawn and weighed for moisture absorption and tested for the degradation in the mechanical properties such as ultimate tensile strength, flexural strength, interlaminar shear strength, and Young's modulus and flexural modulus. Carbon/isopolyester-based specimens showed greater stability with respect to degradation in the mechanical properties than the glass/isopolyester/gel coat- and glass/isopolyester-based specimens. Glass/isopolyester exhibited the maximum moisture absorption, whereas the minimum moisture absorption was found in glass/isopolyester/gel coat. Diffusion coefficient (D) was found to be the highest for glass/isopolyester and the lowest for glass/isopolyester/gel coat, based on the Fick's law of diffusion. Diffusion coefficient increases with the increase in temperature for all the specimens. Microstructure study of fractured specimens was carried out using scanning electron microscope to compare matrix/fiber debonding and matrix-degradation of fiber-reinforced polymer composites.
Resumo:
We reconsider standard uniaxial fatigue test data obtained from handbooks. Many S-N curve fits to such data represent the median life and exclude load-dependent variance in life. Presently available approaches for incorporating probabilistic aspects explicitly within the S-N curves have some shortcomings, which we discuss. We propose a new linear S-N fit with a prespecified failure probability, load-dependent variance, and reasonable behavior at extreme loads. We fit our parameters using maximum likelihood, show the reasonableness of the fit using Q-Q plots, and obtain standard error estimates via Monte Carlo simulations. The proposed fitting method may be used for obtaining S-N curves from the same data as already available, with the same mathematical form, but in cases in which the failure probability is smaller, say, 10 % instead of 50 %, and in which the fitted line is not parallel to the 50 % (median) line.
Resumo:
A minimum weight design of laminated composite structures is carried out for different loading conditions and failure criteria using genetic algorithm. The phenomenological maximum stress (MS) and Tsai-Wu (TW) criteria and the micro-mechanism-based failure mechanism based (FMB) failure criteria are considered. A new failure envelope called the Most Conservative Failure Envelope (MCFE) is proposed by combining the three failure envelopes based on the lowest absolute values of the strengths predicted. The effect of shear loading on the MCFE is investigated. The interaction between the loading conditions, failure criteria, and strength-based optimal design is brought out.
Resumo:
The fatigue behavior of conventional friction stir spot welding (FSSW) and friction stir spot welding refilled by the friction forming process (FSSW-FFP) in aluminum 6061-T6 lap shear specimens, are investigated based on the experimental observations. Optical micrographs of the welds after fatigue failure in both the cases are examined to study the fatigue crack propagation and failure modes. Experimental results indicate that the fatigue strength of the FSSW-FFP weld samples is higher than that of the conventional FSSW samples at all loads. Fracture surfaces are analyzed in detail using the scanning electron microscope. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a specific kind of failure in ethylene cracking coils coated with anticoking film. It investigates a case in which the coils made of 35Cr 45Ni high temperature alloy failed within two years of operation. The damage occurred due to heavy oxidation in localized regions of the coil resulting in the formation of blisters, which eventually failed by cracking. The mechanism involved was determined by studying the oxidized samples under a scanning electron microscope with an energy dispersive system and is attributed to the presence of rare earth metals in the anti-coking film and inherent casting defects in the base alloy. The cerium present in the anti-coking film diffused preferentially to a defect site in the parent alloy thereby resulting in its segregation which further led to embrittlement. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.
Resumo:
Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.