919 resultados para bamboo tube
Resumo:
Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.
Concentration of major and minor elements measured in pore water of sediment core SO177/2-97, tube C
Resumo:
Connecticut Department of Transportation, Bureau of Planning and Research, Wethersfield
Resumo:
Mode of access: Internet.
Resumo:
Shock tubes have been used successfully by a number of investigators to study the biological effects of variations in environmental pressures (1,2,3). Recently an unusually versatile laboratory pressurization source became available with the capability of consistently reproducing a wide variety of pressure-time phenomena of durations equal to and well beyond those associated with the detonation of nuclear devices (4). Thus it became possible to supplement costly full-scale field research in blast biology carried out at the Nevada Test Site (5,6) by using an economical yet realistic laboratory tool. In one exploratory study employing pressure pulses of 5 to 10 sec duration wherein the times to max overpressure and the magnitudes of the overpressures were varied, a relatively high tolerance of biological media to pressures well over 150 psi was demonstrated (7). In contrast, the present paper will describe the relatively high biological susceptibility to long duration overpressures in which the pressure rises occurred in single and double fast-rising steps.
Resumo:
Texas State Department of Highway and Public Transportation, Transportation Planning Division, Austin
Resumo:
Mode of access: Internet.
Resumo:
Connecticut Department of Transportation, Wethersfield
Resumo:
Includes bibliographical references.
Resumo:
Thesis--University of Illinois.