962 resultados para action potential
Resumo:
Oil and fat as energy sources at low cost are relevant in ruminant nutrition. The aim of this study was to evaluate the effects of palm fatty acid distillate (PFAD) on the degradability and ciliate protozoa population in buffalo. Four rumen fistulated buffaloes were fed a basal diet in a Latin square (4x4) design trial. Treatments were designed with four of different levels of PFAD added directly into the rumen: 0; 200; 420 and 500 g/animal/d. High levels of PFAD (420 and 500 g/d) promoted higher degradation of the soluble fraction and lower in potentially degradable fraction of dry matter (DM) and neutral detergent fibre (NDF) with lower values of potential and effective degradability in two evaluated grasses, bermudagrass and brachiariagrass. Significant decreases in the total number of protozoa/mL of rumen content, Entodinium and ciliates belonging to subfamily Diplodiniinae were observed at higher level of PFDA addition in the rumen. Also, Epidinium and Holotrich ciliates disappeared from the rumen. Significant correlations were observed of the ciliate concentration and composition as a function of dietary lipids content. Entodinium composition increased from 68.0% to 99.6% and Diplodiniinae reduced from 30.4% to 0.4% with increasing PFAD level indicating higher fat toxicity effect on the Diplodiniinae ciliates than Entodinium species and direct action of the larger ciliates on the fibre degradation.
Resumo:
The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1
Resumo:
A smooth inflaton potential is generally assumed when calculating the primordial power spectrum, implicitly assuming that a very small oscillation in the inflaton potential creates a negligible change in the predicted halo mass function. We show that this is not true. We find that a small oscillating perturbation in the inflaton potential in the slow-roll regime can alter significantly the predicted number of small halos. A class of models derived from supergravity theories gives rise to inflaton potentials with a large number of steps and many trans-Planckian effects may generate oscillations in the primordial power spectrum. The potentials we study are the simple quadratic (chaotic inflation) potential with superimposed small oscillations for small field values. Without leaving the slow-roll regime, we find that for a wide choice of parameters, the predicted number of halos change appreciably. For the oscillations beginning in the 10(7)-10(8) M(circle dot) range, for example, we find that only a 5% change in the amplitude of the chaotic potential causes a 50% suppression of the number of halos for masses between 10(7)-10(8) M(circle dot) and an increase in the number of halos for masses <10(6) M(circle dot) by factors similar to 15-50. We suggest that this might be a solution to the problem of the lack of observed dwarf galaxies in the range 10(7)-10(8) M(circle dot). This might also be a solution to the reionization problem where a very large number of Population III stars in low mass halos are required.
Resumo:
The extracts from the root, bark and seed of Garcinia kola are currently used in traditional medicine in Nigeria. The aim of this study was to evaluate the inhibitory activity of crude extracts of G. kola on Fusobacterium nucleatum isolated from the oral cavity. Methanol and aqueous extracts were prepared from the seed and the minimal inhibitory concentration was evaluated by the agar dilution method, using a Wilkins-Chalgren agar supplemented with horse blood (5%), hemin (5 mu g/ml) and menadione (1 mu g/ml). Antimicrobial activity of plant extracts on microbial biofilms was determined in microtiter plates. The seed of G. kola demonstrated significant inhibitory action on F. nucleatum isolates at a concentration of 1.25 and 12.5 mg/ml for amoxicillin resistant strain. It was able to inhibit the microbial biofilm formed by the association of F. nucleatum with Porphyromonas gingivalis ATCC 33277, Aggregatibacter actinomycetemcomitans ATCC 33384 and Prevotella intermedia ATCC 2564 at a concentration of 25 mg/ml. The in-vitro inhibitory effect of G. kola on F. nucleatum population suggests a potential role for its use in oral hygiene.
Resumo:
The possibility of having a gauge fixing term in the effective Lagrangian that is not a quadratic expression has been explored in spin-two theories so as to have a propagator that is both traceless and transverse. We first show how this same approach can be used in spontaneously broken gauge theories as an alternate to the 't Hooft gauge fixing which avoids terms quadratic in the scalar fields. This ""nonquadratic"" gauge fixing in the effective action results in two complex fermionic and one real bosonic ghost field. A global gauge invariance involving a fermionic gauge parameter, analogous to the usual Becchi-Rouet-Stora-Tyutin invariance, is present in this effective action.
Resumo:
A correlated many-body basis function is used to describe the (4)He trimer and small helium clusters ((4)HeN) with N = 4-9. A realistic helium dimer potential is adopted. The ground state results of the (4)He dimer and trimer are in close agreement with earlier findings. But no evidence is found for the existence of Efimov state in the trimer for the actual (4)He-(4)He interaction. However, decreasing the potential strength we calculate several excited states of the trimer which exhibit Efimov character. We also solve for excited state energies of these clusters which are in good agreement with Monte Carlo hyperspherical description. (C) 2011 American Institute of Physics. [doi:10.1063/1.3583365]
Resumo:
We show that CPT-even aetherlike Lorentz-breaking actions, for the scalar and electromagnetic fields, are generated via their appropriate Lorentz-breaking coupling to spinor fields, in three, four, and five space-time dimensions. Besides, we also show that aetherlike terms for the spinor field can be generated as a consequence of the same couplings. We discuss the dispersion relations in the theories with aetherlike Lorentz-breaking terms and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field.
Resumo:
We investigate the occurrence of ambiguities for the Lorentz-violating gravitational Chern-Simons term. It turns out that this term is accompanied by a coefficient depending on an undetermined parameter, due to an arbitrariness in the choice of the conserved current.
Resumo:
We have analyzed a large set of alpha + alpha elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even in this low-energy region, the velocity dependence of the model is quite important for describing the data of the alpha + alpha system.
Resumo:
Cross sections of (120)Sn(alpha,alpha)(120)Sn elastic scattering have been extracted from the alpha-particle-beam contamination of a recent (120)Sn((6)He,(6)He)(120)Sn experiment. Both reactions are analyzed using systematic double-folding potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential extracted from the (120)Sn((6)He,(6)He)(120)Sn data may be used as the basis for the construction of a simple global (6)He optical potential. The comparison of the (6)He and alpha data shows that the halo nature of the (6)He nucleus leads to a clear signature in the reflexion coefficients eta(L) : The relevant angular momenta L with eta(L) >> 0 and eta(L) << 1 are shifted to larger L with a broader distribution. This signature is not present in the alpha-scattering data and can thus be used as a new criterion for the definition of a halo nucleus.
Resumo:
A photoluminescence (PL) study of the individual electron states localized in a random potential is performed in artificially disordered superlattices embedded in a wide parabolic well. The valence band bowing of the parabolic potential provides a variation of the emission energies which splits the optical transitions corresponding to different wells within the random potential. The blueshift of the PL lines emitted by individual random wells, observed with increasing disorder strength, is demonstrated. The variation of temperature and magnetic field allowed for the behavior of the electrons localized in individual wells of the random potential to be distinguished.
Resumo:
Objective: The aim of this study was the evaluation of two different photosensitizers activated by red light emitted by light-emitting diodes (LEDs) in the decontamination of carious bovine dentin. Materials and Methods: Fifteen bovine incisors were used to obtain dentin samples which were immersed in brain-heart infusion culture medium supplemented with 1% glucose, 2% sucrose, and 1% young primary culture of Lactobacillus acidophilus 108 CFU/mL and Streptococcus mutans 108 CFU/mL for caries induction. Three different concentrations of the Photogem solution, a hematoporphyrin derivative (1, 2, and 3 mg/mL) and two different concentrations of toluidine blue O (TBO), a basic dye (0.025 and 0.1 mg/mL) were used. To activate the photosensitizers two different light exposure times were used: 60 sec and 120 sec, corresponding respectively to the doses of 24 J/cm(2) and 48 J/cm(2). Results: After counting the numbers of CFU per milligram of carious dentin, we observed that the use of LED energy in association with Photogem or TBO was effective for bacterial reduction in carious dentin, and that the greatest effect on S. mutans and L. acidophilus was obtained with TBO at 0.1 mg/mL and a dose of 48 J/cm(2). It was also observed that the overall toxicity of TBO was higher than that of Photogem, and that the phototoxicity of TBO was higher than that of Photogem. Conclusion: Based on our data we propose a mathematical model for the photodynamic effect when different photosensitizer concentrations and light doses are used.
Resumo:
The photoluminescence (PL) technique as a function of temperature and excitation intensity was used to study the optical properties of multiquantum wells (MQWs) of GaAs/Al(x)Ga(1-x)As grown by molecular beam epitaxy on GaAs substrates oriented in the [100], [311]A, and [311]B directions. The asymmetry presented by the PL spectra of the MQWs with an apparent exponential tail in the lower-energy side and the unusual behavior of the PL peak energy versus temperature (blueshift) at low temperatures are explained by the exciton localization in the confinement potential fluctuations of the heterostructures. The PL peak energy dependence with temperature was fitted by the expression proposed by Passler [Phys. Status Solidi B 200, 155 (1997)] by subtracting the term sigma(2)(E)/k(B)T, which considers the presence of potential fluctuations. It can be verified from the PL line shape, the full width at half maximum of PL spectra, the sigma(E) values obtained from the adjustment of experimental points, and the blueshift maximum values that the samples grown in the [311]A/B directions have higher potential fluctuation amplitude than the sample grown in the [100] direction. This indicates a higher degree of the superficial corrugations for the MQWs grown in the [311] direction. (C) 2008 American Institute of Physics.
Resumo:
The free H(2)xspa ligands [xspa = pspa, Clpspa, tspa or fspa where p = 3-(phenyl), Clp = 3-(2-chlorophenyl), t = 3-(2-thienyl), f = 3-(2-furyl) and spa = 2-sulfanylpropenoato], their Zn(II) complexes of formula [HQ](2)[Zn(xspa)(2)] (HQ=diisopropylammonium) and the Cd(II) equivalents were prepared and characterized by elemental analysis and by IR, Raman and NMR ((1)H, (13)C) spectroscopy. X-Ray studies of the crystal structures of [HQ](2)[Zn(pspa)(2)], [HQ](2)[Zn(Clpspa)2], [HQ](2)[Zn(tspa)(2)] and [HQ](2)[Zn(fspa)(2)] show that the zinc atom is coordinated to two O atoms and two S atoms of the ligands in a distorted tetrahedral ZnO(2)S(2) environment. In the structures of [HQ](2)[Cd(pspa)(2)] and [HQ](2)[Cd(Clpspa)(2)] the cadmium atom is coordinated to three S atoms and two carboxylato O atoms of the ligands in a distorted trigonal bipyramidal environment. The interchange of ligands between Zn( II) and Cd( II) was studied by (113)Cd NMR spectroscopy. The in vitro protective effect of H(2)xspa and their Zn( II) complexes against Cd toxicity was investigated using the human hepatocarcinoma HepG2 cell line and the pig renal proximal tubule LLC-PK1 cell line. The incorporation of Zn( II) was found to be relevant in the case of H(2)pspa, with an increase observed in the cell viability of the LCC-PK1 cells with respect to the value for the free ligand.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.